

Data Sheet: ACD82124

24 Ports 10/100 Fast Ethernet Switch Controller

Rev.1.1.1.F Last Update: November 5, 1998 Subject to Change

Please check ACD's website for update information before starting a design Web site: http://www.acdcorp.com

> *or Contact ACD at:* Email: support@acdcorp.com Tel: 408-433-9898x115 Fax: 408-545-0930

ACD Confidential Material

For ACD authorized customer use only. No reproduction or redistribution without ACD's prior permission.

Table of Contents

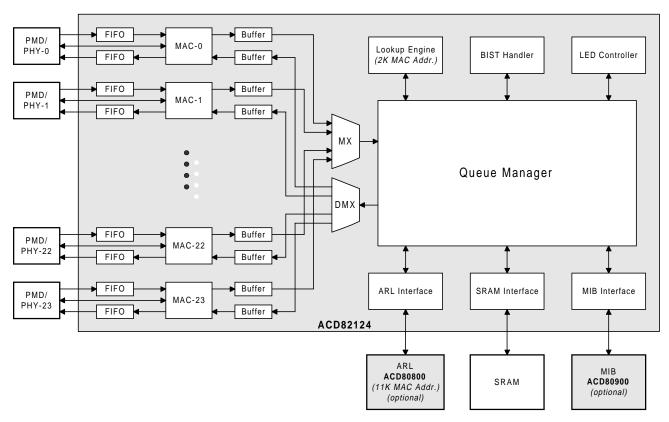
Sec	tion	Page
1	General Description	3
2	Main Features	3
3	System Block Diagram	3
4	System Description	4
5	Functional Description	4
6	Interface Description	10
7	Register Description	16
8	Pin Description	27
9	Timing Description	32
10	Electrical Specifications	38
11	Packaging	39

Appendix

A1	Address Resolution Logic	40
	(The built-in ARL)	

rRODUCTOR

1. GENERAL DESCRIPTION


The ACD82124 is a single chip implementation of a 24 port 10/100 Ethernet switch system intended for IEEE 802.3 and 802.3u compatible networks. The device includes 24 independent 10/100 MACs. Each MAC interfaces with an external PMD/PHY device through a standard MII interface. Speed can be automatically configured through the MDIO port. Each port can operate at either 10Mbps or 100Mbps. The core logic of the ACD82124, implemented with patent pending BASIQ (Bandwidth Assured Switching with Intelligent Queuing) technology, can simultaneously process 24 asynchronous 10/100Mbps port traffic. The Queue Manager inside the ACD82124 provides the capability of routing traffic with the same order of sequence, without any packet loss.

A complete 24 port 10/100 switch can be built with the use of the ACD82124, 10/100 PHY and ASRAM. The MAC addresses can be expanded from the built-in 2K to 11K by the use of ACD's external ARL chip (ACD80800 Address Resolution Logic). Advanced network management features can be supported with the use of ACD's MIB (ACD80900 Management Information Base) chip.

2. FEATURES

.

- 24 ports 10/100 auto-sensing with MII interface
- Half-duplex operation, with optional full-duplex configuration by combining 2 adjacent ports
- 2.4 Gbps aggregated throughput
- True non-blocking switch architecture
- Flexible port configuration (up to 12 full duplex 10/ 100 ports, up to 24 half duplex 10/100 ports)
 - Built-in storage of 2,000 MAC address
- Automatic source address learning
- Zero-Packet Loss back-pressure flow control
- Store-and-forward switch mode
- Port based V-LAN support
- UART type CPU management interface
- Supports up to 11K MAC addresses with the ACD80800
- RMON and SNMP support with ACD80900
- Status LEDs: Link, Speed, Full Duplex, Transmit, Receive, Collision and Frame Error
- Reversible MII option for CPU and expansion port interface
- Wire speed forwarding rate
- 576 pin BGA package
- 3.3V power supply, 3.3V I/O with 5V tolerance

3. SYSTEM BLOCK DIAGRAM

4. SYSTEM DESCRIPTION

The ACD82124 is a single chip implementation of a 24-port Fast Ethernet switch. Together with external ASRAM and transceiver devices, it can be used to build a complete desktop class Fast Ethernet switch. Each individual port can be either auto-sensed or manually selected to run at 10 Mbps or 100 Mbps speed rate, under Half Duplex mode.

The ACD82124 Ethernet switch contains three major functional blocks: the Media Access Controller (MAC), the Queue Manager, and the Lookup Engine.

There are 24 independent MACs within the ACD82124. The MAC controls the receiving, transmitting, and deferring process of each individual port, in accordance to IEEE 802.3 and 802.3u standard. The MAC logic also provides framing, FCS checking, error handling, status indication and back-pressure flow control functions. Each MAC interfaces with an external transceiver through standard MII interface.

The device utilizes ACD's proprietary BASIQ (Bandwidth Assured Switching with Intelligent Queuing) technology. It is a technology to enforce the first-in-firstout rule of Ethernet Bridge-type devices in a very efficient way. The technology enables a true non-blocking frame switching operation at wire speed for a high throughput and high port density Ethernet switch.

The on-chip 2,000 MAC addresses Lookup Engine maps each destination address into a destination port. Each port's MAC address is automatically learned by the Lookup Engine when it receives a frame with no error. Therefore, the ACD82124 alone can be used to build a desktop class Fast Ethernet switch without any additional switching devices. The MAC address space can be expanded from 2,000 to 8,000 per system by using the ACD80800. The ACD82124 has a proprietary ARL interface that allows direct connection with ACD80800. System designers can also use this ARL interface to implement a vendor-specific address resolution algorithm.

The ACD82124 provides management support through its MIB (Management Information Base) interface. The MIB interface can be used to monitor all traffic activities of the switch system. ACD's supporting chip (the ACD80900) provides a full set of statistical counters to support both SNMP and RMON network management. The MIB interface can also be used by system designers to implement vendor-specific network management functionality.

Among the 24 MII interfaces, 10 of them can be configured as reversed MII, to connect directly with standalone MAC controller devices. A MAC in the ACD82124 can be viewed logically as a PHY device if it is configured as a reversed MII interface. The reversed MII is intended for a CPU network interface, or expansion port interface.

A system CPU can access various registers inside the ACD82124 through a serial CPU management interface. The CPU can configure the switch by writing into the appropriate registers, or retrieve the status of the switch by reading the corresponding registers. The CPU can also access the registers of external transceiver (PHY) devices through the CPU management interface.

4

ACD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

INTRODUCTORY

ACD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

5. FUNCTIONAL DESCRIPTION

The MAC controller performs transmit, receive, and defer functions, in accordance to IEEE 802.3 and 802.3u standard specification. The MAC logic also handles frame detection, frame generation, error detection, error handling, status indication and flow control functions.

Frame Format

The ACD82124 assumes that the received data packet will have the following format:

Preamble SFD DA SA Type/Len Data FCS

Where,

- *Preamble* is a repetitive pattern of '1010....' of any length with nibble alignment.
- *SFD* (Start Frame Delimiter) is defined as an octet pattern of 10101011.
- DA (Destination Address) is a 48-bit field that specifies the MAC address of the destined DTE. If the first bit of DA is 1, the ACD82124 will treat the frame as a broadcast/multicast frame and will forward the frame to all ports within the source port's VLAN except the source port itself or BPDU address.
- *SA* (Source Address) is a 48-bit field that contains the MAC address of the source DTE that is transmitting the frame to the ACD82124. After a frame is received with no error, the SA is learned as the port's MAC address.
- *Type/Len* field is a 2-byte field that specifies the type (DIX Ethernet frame) or length (IEEE 802.3 frame) of the frame. The ACD82124 does not process this information.
- Data is the encapsulated information within the Ethernet Packet. The ACD82124 does not process any of the data information in this field.
- FCS (Frame Check Sequence) is a 32-bit field of a CRC (Cyclic Redundancy Check) value based on the destination address, the source address, the type/length and the data field. The ACD82124 will verify the FCS field for each frame. The procedure of computing FCS is described in section of "FCS Calculation."

Start of Frame Detection

When a port's MAC is idle, assertion of the RXDV in the MII interface will cause the port to go into the receive state. The MII presents the received data in 4-bit nibbles that are synchronous to the receive clock (25Mhz or 2.5MHz). The ACD82124 will convert this data into a serial bit stream, and attempt to detect the occurrence of the SFD (10101011) pattern. All data prior to the detection of SFD are discarded. Once SFD is detected, the following frame data are forwarded and stored in the buffer of the switch.

Frame Reception

Under normal operating conditions, the ACD82124 expects a received frame to have a minimum inter frame gap (IFG). The minimum IFG required by the device is 80 BT (Bit Time).

In the event the ACD82124 receives a packet with IFG less than 80BT, the ACD82124 does not guarantee to be able to receive the frame. The packet will be dropped if the ACD82124 cannot receive the frame.

The device will check all received frames for errors such as symbol error, FCS error, short event, runt, long event, jabber etc. Frames with any kind of error will not be forwarded to any port.

Preamble Bit Processing

The preamble bit in the header of each frame will be used to synchronize the MAC logic with the incoming bit stream. The minimum length of the preamble is 0 bits and there is no limitation on the maximum length of preamble. After the receive data valid signal RXDV is asserted by the external PHY device, the port will wait for the occurrence of the SFD pattern (10101011) and then start a frame receiving process.

Source Address and Destination Address

After a frame is received by the ACD82124, the embedded destination address and source address are retrieved. The destination address is passed to the lookup table to find the destination port. The source address is automatically stored into the address lookup table. For applications that use an external ARL, the ACD82124 will disable the internal lookup table and pass the DA and SA to the external ARL for address lookup and learning. A port's MAC address register is cleared on powerup, hardware reset, or when the port enters into Link Fail state. If the SA aging option is enabled *(Register-16 bit 4)*, the learned SA will be cleared if it does not reappear within five minutes.

During the receive process, the Lookup Engine will attempt to match the destination address with the addresses stored in the address table. If a match is found, a link between the source port and the destination port is established. If an external ARL is used, the ACD82124 indicates the presence of a 48-bit DA through the status line of the ARL interface. The external ARL will use the value of DA for address comparison and return a result of the lookup to the ACD82124.

Frame Data

Frame data are transparent to the ACD82124. The ACD82124 will forward the data to the destination port(s) without interpreting the content of the frame data field.

FCS Calculation

Each port of the ACD82124 has CRC checking logic to verify if the received frame has a correct FCS value. A wrong FCS value is an indication of a fragmented frame or a frame with frame bit error. The method of calculating the CRC value is using the following polynomial,

$$G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$

as a divider to divide the bit sequence of the incoming frame, beginning with the first bit of the destination address field, to the end of the data field. The result of the calculation, which is the residue after the polynomial division, is the value of the frame check sequence. This value should be equal to the FCS field appended at the end of the frame. If the value does not match the FCS field of the frame, the Frame Bit Error LED of the port will be turned on once and the packet will be dropped.

Frame Length

During the receiving process, the MAC will monitor the length of the received frame. Legal Ethernet frames should have a length of not less than 64 bytes and no more than 1518 bytes. If the carrier sense signal of a frame is asserted for less than 76 BT, the frame is flagged with short event error. If the length of a frame is less then 64 bytes, the frame is flagged with runt error.

In order to support an application where extra byte length is required, an Extra-Long-Frame option is provided. When the Extra long frame option is enabled *(Table 12: CFG7)*, only frames longer than 1530 bytes are marked with a long event error. Frame length is measured from the first byte of DA to the last byte of FCS.

Frame Filtering

Frames with any kind of error will be filtered. Types of error include code error (indicated by assertion of RXER signal), FCS error, alignment error, short event, runt, and long event.

Any frame heading to its own source port will be filtered. If external ARL is used, the ACD82124 will filter the frame as directed by the external ARL.

If the *Spanning Tree Support* option is enabled, frames containing DA equal to any reserved Bridge Management Group Address specified in Table 3.5 of IEEE 802.1d will not be forwarded to any ports, except the Port-23, which may receive BPDU frames. If spanning tree support is not enabled, frames with DA equal to the reserved Group Address for PBDU will be broadcasted to all ports in the same VLAN of the source port.

Jabber Lockup Protection

If a receiving port is active continuously for more than 50,000 BT, the port is considered to be jabbering. A jabbering port will automatically be partitioned from the switch system in order to prevent it from impairing the performance of the network. The partitioned port will be re-activated as soon as the offending signal discontinues.

Excessive Collision

In the event that there are more than 16 consecutive collision, the ACD82124 will reset the counter to zero and retransmit the packet. This implementation insures there is no packet loss even under channel capture situation. However, ACD82124 has an option to drop the packet on excessive collision. When this option is enabled (*Table 12: CG11*), the frame will be dropped after 16 consecutive collisions.

False Carrier Events

If the RXER signal in the MII interface is asserted when the receive data valid (RXDV) signal is not asserted, the port is considered to have a false carrier event. If a port has more than two consecutive false carrier events, the port will automatically be partitioned from the switch system. The partitioned port will be re-activated if it has been idling for 33,000 BT or it has received a valid frame.

Frame Forwarding

If the first bit of the destination address is 0, the frame is handled as a unicast frame. The destination address is passed to the Address Resolution Logic, which returns a destination port number to identify which port the frame should be forwarded to. If Address Resolution Logic cannot find any match for the destination address, the frame will be treated as a frame with unknown DA. The frame will be processed in one of two ways. If the option flood-to-all-port is enabled, the switch will forward the frame to all ports within the same VLAN of the source port, except the source port itself. If the option is not enabled, the frame will be forwarded to the 'dumping port' of the source port VLAN only. The dumping port is determined by the VLAN ID of the source port. If the source port belongs to multiple VLANs, a frame with unknown DA will then be forwarded to multiple dumping ports of the VLANs.

If the first bit of the destination address is a 1, the frame is handled as a multicast or broadcast frame. The ACD82124 does not differentiate a multicast packet from a broadcast packet except the reserved bridge management group address, as specified in table 3.5 of the IEEE 802.1d standard. The destination ports of the broadcast frame is all ports within the same VLAN except the source port itself.

The order of all broadcast frames with respect to the unicast frames is strictly enforced by the ACD82124.

Frame Transmission

The ACD82124 transmits all frames in accordance to IEEE 802.3 standard. The ACD82124 will send the frames with a guaranteed minimum interframe gap of 96 BT, even if the received frames have an IFG less than the minimum requirement. Before the transmit process is started, the MAC logic will check if the channel has been silent for more than 64 BT. Within the 64 BT silent window, the transmission process will defer on any receiving process. If the channel has been silent for more than 64 BT, the MAC will wait an addi-

tional 32 BT before starting the transmit process. In the event that the carrier sense signal is asserted by the MII during the wait period, the MAC logic will generate a JAM signal to cause a forced collision.

The MAC logic will abort the transmit process if a collision is detected through the assertion of the Col signal of the MII. Re-transmission of the frame is scheduled in accordance to IEEE 802.3's truncated binary exponential backoff algorithm. If the transmit process has encountered 16 consecutive collisions, an excessive collision error is reported, and the ACD82124 will try to re-transmit the frame, unless the drop-on-excessive-collision option of the port is enabled. It will first reset the number of collisions to zero and then start the transmission after 96 BT of interframe gap. If dropon-excessive-collision is enabled, the ACD82124 will not try to re-transmit the frame after 16 consecutive collisions. If a collision is detected after 512 BT of the transmission, a late collision error will be reported, but the frame will still be retransmitted after proper backoff time.

Frame Generation

During a transmit process, frame data is read out from the memory buffer and is forwarded to the destination port's PHY device in nibbles. 7 bytes of preamble signal (10101010) will be generated first followed by the SFD (10101011), and then the frame data and 4 bytes of FCS are sent out last.

Frame Buffer

All ports of the ACD82124 work in Store-And-Forward mode so that all ports can support both 10Mbps and 100Mbps data speed. The ACD82124 utilizes a global memory buffer pool, which is shared by all ports. The device has a unique architecture that inherits the advantage of both output buffer-based and input bufferbased switches. An output buffer-based switch stores the received data only once into the memory, and hence has a short latency. Whereas an input buffer-based switch typically has more efficient flow control.

Flow Control

Under half duplex mode of operation, when the switch cannot handle the receiving of an incoming frame, a collision is generated by sending a jam pattern to the sending party to force it to back off and re-transmit the frame later. Back pressure flow control is applied to a port when its reserved-buffer is full and no more shared buffer is available, or when starvation control is active.

This process is used to ensure that there are no dropped frames. *Backpressure flow control* can be disabled by setting the corresponding bit of the *register-21*.

VLAN Support (register 23 & 24)

The ACD82124 can support up to 4 port-based security VLANs. Each port of the ACD82124 can be assigned up to four VLAN. On power up, every port is assigned to VLAN-0 as default VLAN. Frames from the source port will only be forwarded to destination ports within the same VLAN domain. A broadcast/ multicast frame will be forwarded to all ports within the VLAN(s) of the source port. A unicast frame will be forwarded to the destination port only if the destination port is in the same VLAN as the source port. Otherwise, the frame will be treated as a frame with unknown DA. Each VLAN can be assigned with a dedicated dumping port. Multiple VLANs can also share a dumping port. Unicast frames with unknown destination addresses will be forwarded to the dumping port of the source port VLAN.

Security VLAN can be disabled by setting the corresponding bit in the system configuration register (bit 8 of *Register 16*). When security VLAN is disabled, each VLAN becomes a leaky VLAN and is equivalent to a broadcast domain. Four dumping ports of four different virtual VLAN can be grouped together to form a fat pipe uplink (For example, if port 0&1, port 2&3, port 3&4, port 5&6 are combined to form 4 full duplex ports with 200Mbps per port throughput, these 4 full duplex ports can be grouped to form an 800 Mbps uplink port). When multiple dumping ports are grouped as a single pipe, each port has to be assigned to one and only one VLAN. A unicast frame with a matched DA will be forwarded to any destination, even if the VLAN ID is different. All unmatched DA packets will be forwarded to the designated dumping port of the source port VLAN. The broadcast and multicast packets will only be forwarded to the ports in the same VLAN of the source port. Therefore, a 200 to 800 Mbps pipe can be established by carefully grouping the dumping ports, and connects directly with the segmentation switches.

Dumping Port

Each VLAN can be assigned with a dedicated dumping port. Multiple VLANs can share a dumping port. Each dumping port can be used for up-link connection or for DTE connection. That is, the dumping port can be used to connect the switch with a computer repeater hub, a workgroup switch, a router, or any type of interconnecting device compliant with the IEEE 802.3 standard. The ACD82124 will direct the following frames to the dumping port:

- frame with unicast destination address that does not match with any port's source address within the VLAN of the source port
- frame with broadcast/multicast destination address*

* See Spanning Tree Support

If the device is configured to work under Flood-to-All-Port mode (*Register 25, bit 8*), frames listed above will be forwarded to all the ports in the VLAN(s) of the source port except the source port itself.

Mode of Operation

By default, all ports of the ACD82124 work in half duplex mode. A full-duplex port can be configured by combining two half-duplex ports. In this case, the operation mode of the port is determined by the port's PHY device through auto-negotiation. The mode of a port can also be assigned by the duplex mode indication/assignment register (*Register 27*).

Spanning Tree Support

The ACD82124 supports Spanning Tree protocol. When Spanning Tree Support is enabled (*Register 16 bit 1*), frames from the CPU port (port 23) having a DA equal to the reserved Bridge Management Group Address for BPDU will be forwarded to the port specified by the CPU. Frames from all other ports with a DA equal to the Reserved Group Address for BPDU will be forwarded to the CPU port if the port is in the same VLAN of the CPU port. Port 23 is designed as the default CPU port. When Spanning Tree Support is disabled, all reserved group addresses for Bridge Management is treated as broadcast address.

Every port of the ACD82124 can be set to block-andlisten mode through the CPU interface. In this mode, incoming frames with DA equal to the reserved Group Address for BPDU will be forwarded to the CPU port. Incoming frames with all other DA value will be dropped. Outgoing frames with DA value equal to the Group Address for BPDU will be forwarded to the attached PHY device; all other outgoing frames will be filtered.

Queue Management

Each port of the ACD82124 has its own individual transmission queue. All frames coming into the ACD82124 are stored into the shared memory buffer,

and are lined up in the transmission queues of the corresponding destination port. The order of all frames, unicast or broadcast, is strictly enforced by the ACD82124. The ACD82124 is designed with a nonblocking switching architecture. It is capable of achieving wire-speed frame forwarding rate and handling maximum traffic load.

MII Interface

The MAC of each port of the ACD82124 interfaces with the port's PHY device through the standard MII interface. For reception, the received data (RXD) can be sampled by the rising edge (default) or the falling edge of the receive clock (RXCLK). Assertion of the receive data valid (RXDV) signal will cause the MAC to look for start of Frame Delimiter (SFD). For transmission, the transmit data enable (TXEN) signal is asserted when the first preamble nibble is sent on the transmit data (TXD) lines. The transmit data are clocked out by the falling edge of the transmit clock (TXCLK).

The ACD82124 supports PHY device management through the serial MDIO and MDC signal lines. The ACD82124 can continuously poll the status of the PHY devices through the serial management interface, without CPU intervention. The ACD82124 will also configures the PHY capability field to ensure proper operation of the link. The ACD82124 also enables the CPU to access any registers in the PHY devices through the CPU interface.

Reversed MII Interface

Ten ports of the ACD82124 can be configured as reversed MII interface. Reversed MII behaves as a PHY MII, that the TXCLK, COL, RXD<3:0>, RXCLK, RXDV, CRS signals (names specified by IEEE 802.3u) become output signals of the ACD82124, and the TXER, TXD<3:0>, TXEN, RXER, signals (names specified by IEEE 802.3u) become input signals of the ACD82124. Reversed MII interface enables an external MAC device to be connected directly with the ACD82124.

ASRAM Interface

The ACD82124 requires the use of asynchronous SRAM as a memory buffer. Each read or write cycle takes up to 20 ns. An ASRAM chip with access speed at 12 ns or faster should be used. The ASRAM interface contains a 52-bit data bus, a 17-bit address bus and 4 chip-select signals.

CPU Interface

The ACD82124 does not require a microprocessor for operation. Initialization and most configurations can be done with the use of external hardware pins. However, the ACD82124 provides a CPU interface for a microprocessor to access some of its control registers and status registers. The microprocessor can send a read command to retrieve the status of the switch, or send a write command to configure the switch through a serial interface. This interface is a commonly used UART type interface. The CPU interface can also be used to access the registers inside each PHY device connected with the ACD82124.

ARL Interface

The ACD82124 has a built-in ARL that can store up to 2,000 MAC addresses. It is actually a subset of the full ACD80800 ARL IC. For detailed description, please refer to the ACD80800 Data Sheet. The UARTID for this built-in ARL is shared with the ACD82124 (CFG16 & 17).

The ACD82124 also provides an ARL interface *(Table 12: CFG9)* for supporting additional MAC addresses. Through the ARL interface, the external ARL (ACD80800) device can tap the value of DA out from the data bus in the ASRAM interface, and execute a lookup process to map the value of DA into a port number. The external ARL device also learns the SA values embedded in the received frames via the ARL interface. The value of SA is used to build up the address lookup table.

MIB Interface

Traffic activities on all ports of the ACD82124 can be monitored through the MIB interface. Through the MIB interface, a MIB device can view what the source port is receiving, or what the destination port is transmitting. Therefore, the MIB device can maintain a record of traffic statistics for each port to support network management. Since all received data are stored into the memory buffer, and all transmitted data are retrieved from the memory buffer, the data of the activities can also be captured from the data bus of ASRAM interface. The status of each data transaction between the ACD82124 and the ASRAM is displayed by some dedicated status signal pins of the ACD82124.

LED Interface

The ACD82124 provides a wide variety of LED indicators for simple system management. The update of the LED is completely autonomous and merely requires low speed TTL or CMOS devices as LED drivers. The status display is designed to be flexible to allow the system designer to choose those indicators appropriate for the specification of the equipment.

There are two LED control signals, LEDVLD0 and LEDVLD1, used to indicate the start and end of the LED data signal. LEDCLK signal is a 2.5MHz clock signal. The rising edge of LEDCLK should be used to latch the LED data signal into the LED driver circuitry.

The LED data signals contain Lnk, Xmt, Rcv, Col, Err, Adr, Fdx and Spd, which represent Link status, Transmit status, Receive status, Collision indication, Frame error indication, Port Address learning status, Full duplex operation and Operational Speed status respectively. These status signals are sent out sequentially from port 23 to port 0, once every 50ms. For details about the timing diagrams of the LED signals, refer to the chapter of "Timing Description"

Life Pulse

The ACD82124 continuously sends out life pulses to the WCHDOG pin when it is operating properly. In a catastrophic event, the ACD82124 will not send the life pulse to cause the external watchdog circuitry to time-up and reset the switch system.

6. INTERFACE DESCRIPTION

MII Interface (MII)

The ACD82124 communicates with the external 10/ 100 Ethernet transceivers through standard MII interface. The signals of MII interface are described in *table-6.1*:

Name	Туре	Description	
PxCRS	-	Carrier sense	
PxRXDV		Receive data valid	
PxRXCLK	-	Receive clock (25/2.5 MHz)	
PxRXERR	-	Receive error	
PxRXD0	Ι	Receive data bit 0	
PxRXD1	-	Receive data bit 1	
PxRXD2		Receive data bit 2	
PxRXD3	Ι	Receive data bit 3	
PxCOL	-	Collision indication	
PxTXEN	0	Transmit data valid	
PxTXCLK	I	Transmit clock (25/2.5 MHz)	
PxTXD0	0	Transmit data bit 0	
PxTXD1	0	Transmit data bit 1	
PxTXD2	0	Transmit data bit 2	
PxTXD3	0	Transmit data bit 3	

For MII interface, signal PxRXDV, PxRXER and PxRXD0 through PxRXD3 are sampled by the rising edge of PxRXCLK. Signal PxTXEN, and PxTXD0 through PxTXD3 are clocked out by the falling edge of PxTXCLK. The detailed timing requirement is described in the chapter of "Timing Description"

Ports 0,1, 2, 3, 4, 5, 6, 7, 22 and 23 can be configured as reversed MII ports (*Register 28*, the Reversed MII Enable register). These ports, when configured as "normal" MII, have the same characteristics as all other MII ports. However, when configured as reversed MII interface, they will behave logically like a PHY device, and can interface directly with a MAC device. The signal of reversed MII interface are described by *table-6.2*:

Note: * *Collision Indication* for half-duplex mode. *Not-Ready (output)* for full duplex mode.

Table-6.2: Reversed MII Interface Signals

Туре	Description					
0	Carrier sense					
I	Transmit data valid					
0	Transmit clock (25/2.5 MHz)					
I	Not-Ready (Input)					
I	Transmit data bit 0					
I	Transmit data bit 1					
I	Transmit data bit 2					
Ι	Transmit data bit 3					
0	Collision Indication/					
	Not-Ready (Output)					
0	Receive data valid					
0	Receive clock (25/2.5 MHz)					
0	Receive data bit 0					
0	Receive data bit 1					
0	Receive data bit 2					
0	Receive data bit 3					
	Type 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					

For reversed MII interface, signal PxRXDVR, and PxRXD0R through PxRXD3R are clocked out by the falling edge of PxRXCLKR. Signal PxTXENR, and PxTXD0R through PxTXD3R can be sampled by the falling edge or rising edge of PxTXCLKR, depends on the setting of bit 9 of *Register 16*. The timing behavior is described in the chapter of "Timing Description."

PHY Management Interface

All control and status registers of the PHY devices are accessible through the PHY management interface. The interface consists of two signals: MDC and MDIO, which are described in *Table-6.3*.

Table-6.3: PHY Management Interface Signals

Name	Туре	Description
MDC	0	PHY management clock (1.25MHz)
MDIO	I/O	PHY management data

Frames transmitted on MDIO has the following format (*Table-6.4*):

Table-6.4: MDIO Format

Operation	PRE	ST	OP	PHY-ID	REG-AD	TA	DATA	IDLE
Write	11	01	01	aaaaa	rrrr	10	dd	Z
Read	11	01	10	aaaaa	rrrrr	ZO	dd	Z

Prior to any transaction, the ACD82124 will output thirty-two bits of '1' as a preamble signal. After the preamble, a '01' signal is used to indicate the start of the frame.

For a write operation, the device will send a '01' to signal a write operation. Following the '01' write signal will be the 5 bit ID address of the PHY device and the 5 bit register address. A '10' turn around signal is then followed. After the turn around, the 16 bit of data will be written into the register. After the completion of the write transaction, the line will be left in a high impedance state.

For a read operation, the ACD82124 will output a '10' to indicate read operation after the start of frame indicator. Following the '10' read signal will be the 5-bit ID address of the PHY device and the 5-bit register address. Then, the ACD82124 will cease driving the MDIO line, and wait for one BT. During this time, the MDIO should be in a high impedance state. The ACD82124 will then synchronize with the next bit of '0' driven by the PHY device, and continue on to read 16 bits of data from the PHY device.

The system designer should set the ID of the PHY devices as '1' for port-0, '2' for port-1, ... and '24' for port-23. The detail timing requirement on PHY management signals are described in the chapter of "Timing Description."

CPU Interface

The ACD82124 includes a CPU interface to enable an external CPU to access the internal registers of the ACD82124. The protocol used in the CPU is the asynchronous serial signal (UART). The baud rate can be from 1200 bps to 76800 bps. The ACD82124 automatically detects the baud rate for each command, and returns the result at the same baud rate. The signals in CPU interface are described in *Table-6.5*.

Table-6.5: CPU Interface Signals

Name	Туре	Description					
CPUDI	I	CPU data input					
CPUDO	0	CPU data output					
CPUIRQ	0	CPU interrupt request					

A command sent by CPU comes through the CPUDI line. The command consists of 9 octets. Command frames transmitted on CPUDI have the following format (*Table-6.6*):

Operation	Command	Register	Index	Data	Checksum
Write	0010XX11	8-bit	8-bit	24-bit	8-bit
Read	0010XX01	8-bit	8-bit	24-bit	8-bit

The byte order of data in all fields follows the big-endian convention, i.e. most significant octet first. The bit order is least significant order first. The Command octet specifies the type of the operation. Bit 2 and bit 3 of the command octet is used to specify the device ID of the chip. They are set by bit 16 and bit 17 of the *Register 25* at power on strobing. The address octet specifies the type of the register. The index octet specifies the ID of the register in a register array. For write operation, the Data field is a 4-octet value to specify what to write into the register. For read operation, the Data field is a 4-octet 0 as padded data. The checksum value is an 8-bit value of exclusive-OR of all octets in the frame, starting from the Command octet.

The ACD82124 will respond to each valid command received by sending a response frame through the CPUDO line. The response frames have the following format (*Table-6.7*):

Table-6.7: Response Format

Response	Command	Result	Data	Checksum				
Write	00100011	8-bit	24-bit	8-bit				
Read	00100001	8-bit	24-bit	8-bit				

The command octet specifies the type of the response. The result octet specifies the result of the execution.

The Result field in a response frame is defined as:

- 00 for no error
- 01 for Checksum
- 10 for address incorrect
- 11 for MDIO waiting time-out

For response to a read operation, the Data field is a 3octet value to indicate the content of the register. For response to a write operation, the Data field is 24 bits of 0. The checksum value is an 8-bit value of exclusive-OR of all octets in the response frame, starting from the Command octet.

CPUIRQ is used to inform the CPU of some special status has been encountered by the ACD82124, like port partition, fatal system error, etc. By clearing the appropriate bit in the interrupt mask register, one can stop the specific source from generating an interrupt request. Reading the interrupt source register retrieves the source of the interrupt and clears the interrupt source register.

ASRAM Interface

All received frames are stored into the shared memory buffer through the ASRAM interface. When the destination port is ready to transmit the frame, data is read from the shared memory buffer through the ASRAM interface. The signals in ASRAM interface are described in *Table-6.8*.

Table-6.8: ASRAM Interface

Name	Туре	Description	
DATA0-DATA51	١⁄O	memory data bus	
ADDR0-ADDR16	0	memory address bus	
nOE	0	output enable, low active	
nWE	0	write enable, low active	
nCS0 - nCS3	0	chip select signals, low active.	

Data is written into the ASRAM or read from the ASRAM in 52-bit wide words. The data is a 48-bit wide value and the control is a 4 bit-wide value. ADDR specifies the address of the word, and DATA contains the content of the word. Bit 0 ~ 47 of DATA bus are used to pass 48-bit frame data. Bit 48 are used to indicate the start and end of a frame. Bit 49 ~ 51 are used to indicate the length of actual data presented on DATA0 ~ DATA47.

nOE and nWE are used to control the timing of read or write operation respectively. nCSx selects the ASRAM chip corresponding to the word address. The timing requirement on ASRAM access is described in the chapter-9 "Timing Description".

ARL Interface

ARL interface provides a communication path between the ACD82124 and an ARL device, which can provide up to 8K of additional address lookup function. As the ACD82124 receives a frame, the destination address and source address of the frame are displayed on the ARLDO data lines for the external ARL device. After the external ARL finds the corresponding destination port, it returns the result through the ARLDIx lines to the ACD82124. The timing requirement on ARL signals is described in *Chapter-9* "Timing Description." *Table-6.9* shows the associated signals in ARL interface.

Table-6.9: ARL Interface Signals

Name	Туре	Description
ARLDO0-RLDO51	0	ARL data output, shared with
		DATA 0 - DATA 51
ARLDIR1-ARLDIR0	0	ARL data direction indicator
		00 for idle
		01 for receive
		10 for transmit
		11 for control
ARLSYNC	0	ARL port synchronization
ARLSTAT0-	0	ARL data state indicator
ARLSTAT3		
ARLCLK	0	ARL clock
ARLDIO - ARLDI3	I	ARL data input
ARLDIV	I	ARL input data valid

The data signal is tapped from the DATA bus of ASRAM interface. Since all data of the received frames will be written into the shared memory through the DATA bus, the bus can be used to monitor occurrences of DA and SA values, indicated by the status signal of ARLSTAT. Therefore, ARLD0 through ARLD51 are the same signals of DATA0 through DATA47.

ARLDIR1 and ARLDIR0 are used to indicate the direction of data on the ARLDO bus:

- 00: Idle
- 01: for receiving data
- 10: for transmitting data
- 11: Header

ARLSYNC is used to indicate port 0 is driving the DATA bus. Since the bus is pre-allocated in time division multiplexing manner, the ARL device can determine which port is driving the DATA bus.

ARLSTAT are used to indicate the status of the data shown on the first 48 bits of DATA bus. The 4-bit status is defined as:

- 0000 Idle
- 0001 First word (DA)
- 0010 Second word (SA)
- 0011 Third through last word
- 0100 Filter Event
- 0101 Drop Event
- 0110 Jabber
- 0111 False Carrier/Deferred Transmission*
- 1000 Alignment error/Single Collision*

Data Sheet: ACD82124

INTRODUCTORY

Table-11: LED Interface Signals

Name	Туре	Description	Signal Group 1	Signal Group 2
LEDVLD0	0	LED signal valid #0	1	0
LEDVLD1	0	LED signal valid #1	0	1
nLEDCLK	0	2.5 MHz LED clock	-	-
nLED0	0	Dual purpose indicator	address learning status	frame error indicator
nLED1	0	Dual purpose indicator	full duplex indication	collision indication
nLED2	0	Dual purpose indicator	port speed (1=10Mbps,0=100Mbps)	receiving activity
nLED3	0	Dual purpose indicator	Link status	transmit activity

- 1001 Flow Control/Multiple Collision*
- 1010 Short Event/Excessive Collision*
- 1011 Runt/Late Collision
- 1100 Symbol Error
- 1101 FCS Error
- 1110 Long Event
- 1111 Reserved

*Note: error type depends on whether the port is receiving or transmitting.

ARLDIx is used to receive the lookup result from the external ARL. Result is returned by external ARL device through the ARLDIx lines. Returned data is sampled by the rising edge of ARLCLK. The ARL result has the following format:

SID	RSLT	DID

Where

- SID is a 5-bit ID of the source port (0 23)
- RSLT is a 2-bit result, defined as:
 - 00 reserved
 - 01 matched
 - 10 not matched
 - 11 forced discard
- DID is a 5-bit ID of the destination port (0 23)

The start of each ARL result is indicated by assertion of ARLDIV signal.

LED Interface

The signals in the LED interface is described in *table-6.10*:

The status of each port is displayed on the LED interface for every 50ms. LEDVLD0 and LEDVLD1 are used to indicate the start and end of the LED data. LED data is clocked out by the falling edge of LEDCLK, and should be sampled by the rising edge of LEDCLK. LED data of port 23 are clocked out first, followed by port 22 down to port 0. All LED signals are low active.

Data Sheet: ACD82124

Configuration Interface

There are 20 pins whose pull-up or pull-down state will be used as Power-On-Strobing configuration data (*Register 25, & CFG0 - CFG19*) to specify various working modes of the ACD82124. The CFG pins are shared with other functional pins of the ACD82124. The pullhigh or pull-low status of the CFG pins are used to indicate specific configuration settings, described in *Table-6.11*. The register description section will provide more details about the *POS Configuration register*.

Table-6.11: Configuration Interface

	Configuration	Interface	
Pin Name	Register #	Bit #	Setting
P7TXD0		0	
P7TXD1		1	1
P7TXD2		2	
P7TXD3		3	1
P6TXD0		4	1
P6TXD1		5	
P6TXD2		6	1
P6TXD3		7	
LEDCLK		8	See Table-
LEDVLD0	25	9	7.25
LEDVLD1		10	1.25
nLED3		11	1
nLED2		12	
nLED1		13	1
nLED0		14	
P5TXD0		15	
P5TXD1		16	
P5TXD2		17	
P5TXD3		18	
P2TxD0		0	
P2TxD1		1	
P2TxD2		2	
P2TxD3		3	
P3TxD0		4	
P3TxD1	26	5	See Table-
P3TxD2	20	6	7.26
P3TxD3		7	
P4TxD0		8	
P4TxD1		9	
P4TxD2		10	
P4TxD3		11	
P0TXD0		0	
P0TXD1		1	
P0TXD2		2	
P0TXD3	30	3	See Table-
P1TXD0	30	4	7.30
P1TXD1		5	
P1TXD2		6]
P1TXD3		7	
P23TXD0R		0	See Appendix-
P23TXD1R	20, inside the	1	A1
P23TXD2R	Internal ARL	2	0
P23TXD3R		3	

Other Interface (Table-6.12)

Table-6.12: Other Interface

Name	Туре	Description
CLK50	Ι	50 MHz clock input
nRESET	Ι	hardware reset
WCHDOG	0	watch dog life pulse signal
VDD	-	3.3 V power
VSS	-	ground

CLK50 should come from a clock oscillator, with 0.01% (100 ppm) accuracy.

Assertion of the nRESET pin will cause the ACD82124 to go through the power-up initialization process. All registers are set to their default value after reset.

When the ACD82124 is working properly, it will generate pulses from the WCHDOG pin continuously. It is used as a safeguard, so that in case something unexpected happens, the external watchdog circuit will reset the switch system.

VDD is 3.3V power supply. VSS is power ground.

Data Sheet: ACD82124

ACD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

7. REGISTER DESCRIPTION

Registers in the ACD82124 are used to define the operation mode of various function modules of the switch controller and the peripheral devices. Default values at power-on are defined by the factory. The management CPU (optional) can read the content of all registers and modify some of the registers to change the operation mode. Table-7.0 lists all the registers inside the switch controller.

INTSRC register (register 1)

The INTSRC register indicates the source of the interrupt request. Before the CPU starts to respond to an interrupt request, it should read this register to find out the interrupt source. This register is automatically cleared after each read. Table-7.1 lists all the bits of this register.

SYSERR register (register 2)

The SYSERR register indicates the presence of sys-

Table-7.1: INTSRC Register

Bit	Description	Default
0	System initialization completed	0
1	System error occurred	0
2	Port partition occurred	0
3	ARL Interrupt	0
4	Reserved	0
5	Reserved	0
6	Reserved	0
7	Reserved	0

tem errors. It is automatically cleared after each read. Table-7.2 lists all kind of system error.

Table-7.2: SYSERR Register

Bit	Description	Default			
0	BIST failure indication	0			
1	Reserved	0			
2	Reserved	0			
3	Reserved	0			
4	Reserved	0			
5	Reserved	0			
6	Reserved	0			
7	Reserved	0			
8	Reserved	0			

Table-7.0: Register List

Address	Name	Туре	Size	Depth	Description	
0				Reserved		
1	INTSRC	R	8 Bit	1	Interrupt Source	
2	SYSERR	R	24 Bit	1	System Error	
3	PAR	R	24 Bit	1	Port Partition Indication	
4	PMERR	R	24 Bit	1	PHY Management Error	
5	ACT	R	24 Bit	1	Port Avtivity	
6-15				Reser	ved	
16	SYSCFG	R/W	16 Bit	1	System Configuration	
17	INTMSK	R/W	8 Bit	1	Interrupt Mask	
18	SPEED	R/W	24 Bit	1	Port Speed	
19	LINK	R/W	24 Bit	1	Port Link	
20	nFWD	R/W	24 Bit	1	Port Forward Disable	
21	nBP	R/W	24 Bit	1	Port Back Pressure Disable	
22	nPORT	R/W	24 Bit	1	Port Disable	
23	PVID	R/W	4 Bit	24	Port VLAN ID	
24	VPID	R/W	5 Bit	4	VLAN Dumping Port	
25	POSCFG	R/W	19 Bit	1	Power-On-Strobe Configuration	
26	nPAUSE	R/W	24 Bit	1	Port Pause Frame Disable	
27	DPLX	R/W	24 Bit	1	Port Duplex Mode	
28	RVSMI	R/W	5 Bit	1	Reversed MII Selection	
29	nPM	R/W	24 Bit	1	Port PHY Management Disable	
30	ERRMSK	R/W	8 Bit	1	Error Mask	
31	CLKADJ	R/W	4 Bit	1	ARL Clock Delay Adjustment	
32-63	PHYREG	R/W	16 Bit	24	Registers in PHY device, (REG# - 32)	

INTRODUCTORY

PAR register (register 3)

The PAR register indicates the presence of the partitioned ports and the port ID. A port can be automatically partitioned if there is a consecutive false carrier event, an excessive collision or a jabber. This register is automatically cleared after each read. Table-7.3 lists all the bits of this register.

Table-7.3: PAR Register

BitDescriptionDefa00 - Port 0 not partitioned. 1 - Port 0 partitioned.010 - Port 1 not partitioned. 1 - Port 1 partitioned.0	un
0 1 - Port 0 partitioned. 1 0 - Port 1 not partitioned.	
1 0 - Port 1 not partitioned.	
1 1 - Port 1 partitioned.	
2 0 - Port 2 not partitioned.	
² <u>1 - Port 2 partitioned.</u>	
3 0 - Port 3 not partitioned.	
1 - Port 3 partitioned.	
4 0 - Port 4 not partitioned.	
1 - Port 4 partitioned.	
5 0 - Port 5 not partitioned.	
1 - Port 5 partitioned.	
6 0 - Port 6 not partitioned.	
1 - Port 6 partitioned.	
7 0 - Port 7 not partitioned.	
' 1 - Port 7 partitioned.	
8 0 - Port 8 not partitioned.	
1 - Port 8 partitioned.	
9 0 - Port 9 not partitioned.	
1 - Port 9 partitioned.	
10 0 - Port 10 not partitioned.	
1 - Port 10 partitioned.	
11 0 - Port 11 not partitioned.	
1 - Port 11 partitioned.	
12 0 - Port 12 not partitioned.	
1 - Port 12 partitioned.	
13 0 - Port 13 not partitioned.	
1 - Port 13 partitioned.	
14 0 - Port 14 not partitioned.	
1 - Port 14 partitioned.	
15 0 - Port 15 not partitioned.	
1 - Port 15 partitioned.	
16 0 - Port 16 not partitioned.	
1 - Port 16 partitioned.	
17 0 - Port 17 not partitioned.	
1 - Port 17 partitioned.	
18 0 - Port 18 not partitioned.	
1 - Port 18 partitioned.	
19 0 - Port 19 not partitioned.	
19 1 - Port 19 partitioned.	
20 0 - Port 20 not partitioned.	
1 - Port 20 partitioned.	
0 - Port 21 not partitioned.	
1 - Port 21 partitioned.	
22 0 - Port 22 not partitioned.	
1 - Port 22 partitioned.	
23 0 - Port 23 not partitioned.	
1 - Port 23 partitioned.	

PMERR register (register 4)

The PMERR register indicates the presence of PHYs that have failed to respond to the PHY Management command issued through the MDIO line. This register is automatically cleared after each read. Table-7.4 describes all the bit of this register.

Bit	Description	Default
0	0 - Port 0 PHY responded	
0	1 - Port 0 PHY failed to respond	
1	0 - Port 1 PHY responded	1
I	1 - Port 1 PHY failed to respond	
0	0 - Port 2 PHY responded	1
2	1 - Port 2 PHY failed to respond	
0	0 - Port 3 PHY responded	
3	1 - Port 3 PHY failed to respond	
4	0 - Port 4 PHY responded	
4	1 - Port 4 PHY failed to respond	
~	0 - Port 5 PHY responded	1
5	1 - Port 5 PHY failed to respond	
0	0 - Port 6 PHY responded	1
6	1 - Port 6 PHY failed to respond	
-	0 - Port 7 PHY responded	1
7	1 - Port 7 PHY failed to respond	
•	0 - Port 8 PHY responded	
8	1 - Port 8 PHY failed to respond	
0	0 - Port 9 PHY responded	1
9	1 - Port 9 PHY failed to respond	
4.0	0 - Port 10 PHY responded	1
10	1 - Port 10 PHY failed to respond	
	0 - Port 11 PHY responded	1
11	1 - Port 11 PHY failed to respond	
40	0 - Port 12 PHY responded	0
12	1 - Port 12 PHY failed to respond	
40	0 - Port 13 PHY responded	
13	1 - Port 13 PHY failed to respond	
4.4	0 - Port 14 PHY responded	1
14	1 - Port 14 PHY failed to respond	
45	0 - Port 15 PHY responded	1
15	1 - Port 15 PHY failed to respond	
40	0 - Port 16 PHY responded	1
16	1 - Port 16 PHY failed to respond	
47	0 - Port 17 PHY responded	1
17	1 - Port 17 PHY failed to respond	
40	0 - Port 18 PHY responded	1
18	1 - Port 18 PHY failed to respond	
40	0 - Port 19 PHY responded	1
19	1 - Port 19 PHY failed to respond	
00	0 - Port 20 PHY responded	1
20	1 - Port 20 PHY failed to respond	
0 .1	0 - Port 21 PHY responded	1
21	1 - Port 21 PHY failed to respond	
	0 - Port 22 PHY responded	1
22		
	0 - Port 23 PHY responded	1
23		
	 Port 22 PHY failed to respond Port 23 PHY responded Port 23 PHY failed to respond 	

Table-7.4: PMERR Register

INTRODUCTORY

ACD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

The ACT register indicates the presence of transmit or receive activities of each port since the register was last read. This register is automatically cleared after each read. Table-7.5 describes all the bits of this register.

Table-7.5: ACT Register

BitDescriptionDefault0 $0 - Port 0$ no activity1 $0 - Port 0$ has activity1 $0 - Port 1$ no activity2 $0 - Port 2$ no activity2 $1 - Port 2$ has activity3 $0 - Port 3$ no activity4 $0 - Port 3$ no activity5 $1 - Port 3$ has activity6 $0 - Port 4$ has activity7 $0 - Port 5$ no activity6 $0 - Port 6$ no activity7 $0 - Port 6$ no activity7 $0 - Port 7$ na activity8 $0 - Port 7$ no activity9 $0 - Port 8$ no activity10 $0 - Port 9$ no activity11 $0 - Port 10$ no activity12 $0 - Port 11$ no activity13 $0 - Port 12$ no activity14 $0 - Port 13$ no activity15 $0 - Port 14$ no activity16 $0 - Port 15$ no activity17 $0 - Port 16$ no activity18 $0 - Port 17$ no activity19 $0 - Port 18$ no activity19 $0 - Port 21$ no activity10 $0 - Port 19$ no activity12 $0 - Port 16$ no activity13 $0 - Port 16$ no activity14 $0 - Port 17$ has activity15 $0 - Port 18$ no activity16 $0 - Port 20$ no activity17 $1 $	Table	7.5: ACT Register	
01 - Port0has activity10 - Port1no activity20 - Port2no activity30 - Port2has activity30 - Port3has activity40 - Port4no activity50 - Port5no activity60 - Port6no activity70 - Port6has activity80 - Port6no activity70 - Port7has activity80 - Port7no activity90 - Port9no activity91 - Port9has activity90 - Port9no activity100 - Port10no activity110 - Port10no activity120 - Port11no activity130 - Port12no activity140 - Port13no activity150 - Port15no activity160 - Port15has activity170 - Port16has activity180 - Port18no activity190 - Port19no activity111 - Port10has activity121 - Port15has activity140 - Port15has activity150 - Port16has activity160 - Port18has activity17 <th>Bit</th> <th>Description</th> <th>Default</th>	Bit	Description	Default
1 - Port 0has activity10 - Port 1no activity20 - Port 2no activity30 - Port 3no activity30 - Port 3no activity40 - Port 4no activity50 - Port 5no activity60 - Port 5no activity70 - Port 6no activity60 - Port 6no activity70 - Port 6no activity80 - Port 7no activity90 - Port 8no activity90 - Port 9no activity90 - Port 9no activity100 - Port 10no activity110 - Port 11no activity120 - Port 12no activity130 - Port 13no activity140 - Port 14no activity150 - Port 15no activity160 - Port 16no activity170 - Port 17no activity180 - Port 18no activity190 - Port 19no activity111 - Port 116no activity121 - Port 15no activity131 - Port 16no activity140 - Port 17no activity151 - Port 18no activity160 - Port 19no activity171 - Port 19no activity180 - Port 20no activity190 - Port 21no activity200 - Port 21	0	0 - Port 0 no activity	
11 - Port1 has activity20 - Port2 no activity30 - Port3 no activity40 - Port4 no activity40 - Port4 no activity50 - Port5 no activity60 - Port6 no activity70 - Port6 no activity80 - Port7 no activity90 - Port8 no activity90 - Port9 no activity100 - Port9 no activity110 - Port9 no activity120 - Port10 no activity130 - Port11 no activity140 - Port12 no activity150 - Port13 no activity160 - Port14 no activity171 - Port14 has activity180 - Port15 no activity190 - Port16 no activity111 - Port16 has activity121 - Port12 has activity131 - Port140 - Port151 - Port160 - Port171 - Port180 - Port190 - Port190 - Port190 - Port10 - Port11 - Port12 - Port14 - Port15 - Port16 - Port17 - Port18191910 - Port11 - Port12 - Port13 - P	0	1 - Port 0 has activity	
11 - Port1 has activity20 - Port2 no activity30 - Port3 no activity40 - Port4 no activity40 - Port4 no activity50 - Port5 no activity60 - Port6 no activity70 - Port6 no activity80 - Port7 no activity90 - Port8 no activity90 - Port9 no activity100 - Port9 no activity110 - Port9 no activity120 - Port10 no activity130 - Port11 no activity140 - Port12 no activity150 - Port13 no activity160 - Port14 no activity171 - Port14 has activity180 - Port15 no activity190 - Port16 no activity111 - Port16 has activity121 - Port12 has activity131 - Port140 - Port151 - Port160 - Port171 - Port180 - Port190 - Port190 - Port190 - Port10 - Port11 - Port12 - Port14 - Port15 - Port16 - Port17 - Port18191910 - Port11 - Port12 - Port13 - P		0 - Port 1 no activity	
2 $0 - Port 2$ $1 - Port 2$ $1 - Port 3$ $1 - Port 4$ $1 - Port 4$ $1 - Port 4$ $1 - Port 5$ $1 - Port 6$ $1 - Port 6$ $1 - Port 6$ $1 - Port 6$ $1 - Port 7$ $1 - Port 8$ $1 - Port 8$ $1 - Port 8$ $1 - Port 8$ $1 - Port 9$ $1 - Port 10$ $1 - Port 10$ $1 - Port 10$ $1 - Port 11$ $1 - Port 11$ $1 - Port 11$ $1 - Port 11$ $1 - Port 12$ $1 - Port 12 has activity0120 - Port 121 - Port 131 - Port 13 has activity0130 - Port 141 - Port 15 has activity140 - Port 161 - Port 15 has activity150 - Port 161 - Port 16 has activity160 - Port 171 - Port 15 has activity170 - Port 171 - Port 16 has activity180 - Port 181 - Port 191 - Port 19 has activity190 - Port 201 - Port 20 has activity200 - Port 201 - Port 21 has activity210 - Port 221 - Port 22 has activity220 - Port 221 - Port 231 - Port 23 no activity$	1		
21 - Port2 has activity30 - Port3 no activity40 - Port4 no activity41 - Port4 has activity50 - Port5 no activity60 - Port6 no activity70 - Port6 has activity80 - Port8 no activity90 - Port9 no activity90 - Port9 no activity100 - Port10 no activity110 - Port10 no activity120 - Port11 no activity130 - Port12 no activity140 - Port13 no activity150 - Port14 no activity160 - Port16 no activity170 - Port16 no activity180 - Port17 no activity190 - Port18 no activity101 - Port16 no activity111 - Port11 has activity121 - Port131 - Port141 - Port151 - Port160 - Port171 - Port180 - Port190 - Port190 - Port190 - Port190 - Port101 - Port200 - Port211 - Port221 - Port230 - Port230 - Port230 - Port230 - Port240 - Port <td></td> <td></td> <td></td>			
3 $0 - Port 3$ no activity $1 - Port 3$ has activity4 $0 - Port 4$ no activity5 $0 - Port 5$ no activity6 $0 - Port 5$ no activity6 $0 - Port 6$ has activity7 $0 - Port 6$ has activity8 $0 - Port 7$ no activity9 $0 - Port 9$ no activity10 $0 - Port 9$ no activity11 $0 - Port 10$ no activity12 $0 - Port 11$ no activity13 $0 - Port 12$ no activity14 $0 - Port 13$ no activity15 $0 - Port 14$ no activity16 $0 - Port 15$ no activity17 $0 - Port 16$ no activity18 $0 - Port 16$ no activity19 $0 - Port 17$ no activity10 $0 - Port 110$ no activity11 $0 - Port 110$ no activity12 $0 - Port 12$ no activity13 $0 - Port 13$ no activity14 $0 - Port 15$ no activity15 $0 - Port 16$ no activity16 $0 - Port 17$ no activity17 $0 - Port 18$ no activity18 $0 - Port 18$ no activity19 $0 - Port 20$ no activity19 $0 - Port 20$ no activity20 $0 - Port 21$ no activity21 $0 - Port 21$ no activity22 $0 - Port 22$ no activity23 $0 - Port 23$ no activity	2	-	
31 - Port 3 has activity 4 0 - Port 4 no activity 5 0 - Port 5 no activity 5 0 - Port 5 has activity 6 0 - Port 6 no activity 7 0 - Port 7 no activity 7 0 - Port 8 no activity 8 0 - Port 8 no activity 9 0 - Port 9 no activity 1 - Port 9 no activity 9 0 - Port 9 no activity 10 0 - Port 10 no activity 11 0 - Port 11 no activity 12 0 - Port 12 no activity 13 0 - Port 13 no activity 13 0 - Port 15 no activity 14 0 - Port 16 no activity 15 0 - Port 17 no activity 16 0 - Port 18 has activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 17 no activity 14 0 - Port 16 no activity 15 0 - Port 17 no activity 16 0 - Port 17 no activity 17 0 - Port 18 no activity 18 0 - Port 19 no activity 19 0 - Port 20 no activity 19 0 - Port 20 no activity 20 0 - Port 21 no activity 21 0 - Port 22 no activity 22 0 - Port 22 no activity 21 0 - Port 22 no activity 22 0 - Port 23 no activity			
4 $0 \cdot Port 4$ no activity5 $0 \cdot Port 5$ no activity6 $0 \cdot Port 6$ no activity7 $1 \cdot Port 6$ has activity7 $0 \cdot Port 7$ no activity7 $1 \cdot Port 6$ has activity8 $0 \cdot Port 7$ no activity9 $0 \cdot Port 8$ no activity9 $0 \cdot Port 9$ no activity10 $0 \cdot Port 9$ no activity11 $0 \cdot Port 10$ no activity12 $0 \cdot Port 12$ no activity13 $0 \cdot Port 13$ no activity14 $0 \cdot Port 14$ no activity15 $0 \cdot Port 15$ no activity16 $0 \cdot Port 16$ no activity17 $0 \cdot Port 17$ no activity18 $0 \cdot Port 17$ no activity19 $0 \cdot Port 17$ no activity19 $0 \cdot Port 17$ no activity10 $1 \cdot Port 17$ no activity14 $0 \cdot Port 16$ no activity15 $0 \cdot Port 17$ no activity16 $0 \cdot Port 17$ no activity17 $1 \cdot Port 17$ has activity18 $0 \cdot Port 18$ no activity19 $0 \cdot Port 20$ no activity20 $0 \cdot Port 21$ no activity21 $0 \cdot Port 21$ no activity22 $0 \cdot Port 22$ no activity23 $0 \cdot Port 23$ no activity	3	5	
41 - Port 4 has activity50 - Port 5 no activity60 - Port 6 no activity71 - Port 6 has activity70 - Port 7 no activity80 - Port 8 no activity90 - Port 9 no activity100 - Port 9 no activity110 - Port 10 no activity120 - Port 11 no activity130 - Port 12 no activity140 - Port 13 no activity150 - Port 14 no activity160 - Port 15 no activity171 - Port 16 no activity180 - Port 17 no activity191 - Port 18 has activity100 - Port 19 no activity110 - Port 11 no activity120 - Port 12 no activity130 - Port 13 no activity140 - Port 14 no activity150 - Port 15 no activity160 - Port 16 no activity171 - Port 17 no activity180 - Port 19 no activity190 - Port 19 no activity190 - Port 20 no activity101 - Port 21 has activity1120 - Port 20 no activity121 - Port 21 no activity131 - Port 12 has activity140 - Port 14 no activity151 - Port 15 has activity161 - Port 17 no activity171 - Port 21 has activity181 - Port 20 no activity191 - Port 21 no activity201 - Port 21 no activity21<			
5 $0 \cdot \text{Port } 5$ no activity $1 \cdot \text{Port } 6$ has activity6 $0 \cdot \text{Port } 6$ no activity $1 \cdot \text{Port } 6$ has activity7 $0 \cdot \text{Port } 7$ no activity8 $0 \cdot \text{Port } 8$ no activity9 $0 \cdot \text{Port } 8$ has activity9 $0 \cdot \text{Port } 9$ no activity10 $0 \cdot \text{Port } 9$ no activity11 $0 \cdot \text{Port } 10$ no activity12 $0 \cdot \text{Port } 11$ no activity13 $0 \cdot \text{Port } 12$ no activity14 $0 \cdot \text{Port } 13$ no activity15 $0 \cdot \text{Port } 13$ no activity16 $0 \cdot \text{Port } 15$ no activity17 $0 \cdot \text{Port } 16$ no activity18 $0 \cdot \text{Port } 18$ no activity19 $0 \cdot \text{Port } 18$ no activity10 $0 \cdot \text{Port } 13$ no activity12 $0 \cdot \text{Port } 13$ no activity13 $0 \cdot \text{Port } 13$ no activity14 $0 \cdot \text{Port } 16$ no activity15 $0 \cdot \text{Port } 16$ no activity16 $0 \cdot \text{Port } 16$ no activity17 $0 \cdot \text{Port } 17$ no activity18 $0 \cdot \text{Port } 19$ no activity19 $0 \cdot \text{Port } 20$ no activity20 $0 \cdot \text{Port } 21$ no activity21 $0 \cdot \text{Port } 21$ no activity22 $0 \cdot \text{Port } 21$ no activity23 $0 \cdot \text{Port } 23$ no activity	4		
31 - Port 5 has activity 6 0 - Port 6 no activity 7 0 - Port 7 no activity 7 0 - Port 7 no activity 8 0 - Port 8 no activity 8 0 - Port 9 no activity 9 0 - Port 9 no activity 1 - Port 9 has activity 10 0 - Port 10 no activity 11 0 - Port 11 no activity 12 0 - Port 12 no activity 12 0 - Port 13 no activity 13 0 - Port 14 no activity 14 0 - Port 15 no activity 15 0 - Port 16 no activity 16 0 - Port 17 no activity 17 0 - Port 18 no activity 18 0 - Port 19 no activity 19 0 - Port 10 no activity 12 0 - Port 11 no activity 14 0 - Port 12 no activity 12 0 - Port 13 no activity 14 0 - Port 14 no activity 15 0 - Port 15 no activity 16 0 - Port 16 no activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 19 0 - Port 20 no activity 20 0 - Port 21 no activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity	<u> </u>		
6 $0 \cdot Port 6$ no activity $1 \cdot Port 6$ has activity7 $0 \cdot Port 7$ no activity8 $0 \cdot Port 8$ no activity9 $0 \cdot Port 9$ no activity9 $0 \cdot Port 9$ no activity10 $0 \cdot Port 10$ no activity11 $0 \cdot Port 10$ no activity12 $0 \cdot Port 11$ no activity13 $0 \cdot Port 12$ no activity14 $0 \cdot Port 13$ no activity15 $0 \cdot Port 14$ no activity16 $0 \cdot Port 15$ no activity17 $0 \cdot Port 16$ no activity18 $0 \cdot Port 16$ no activity19 $0 \cdot Port 17$ no activity10 $0 \cdot Port 16$ no activity12 $0 \cdot Port 17$ no activity13 $0 \cdot Port 16$ no activity14 $0 \cdot Port 16$ no activity15 $0 \cdot Port 16$ no activity16 $0 \cdot Port 17$ no activity17 $1 \cdot Port 16$ has activity18 $0 \cdot Port 17$ no activity19 $0 \cdot Port 19$ no activity19 $0 \cdot Port 20$ no activity20 $0 \cdot Port 21$ no activity21 $0 \cdot Port 21$ no activity22 $0 \cdot Port 22$ no activity23 $0 \cdot Port 23$ no activity	5		
6 $1 \cdot Port \ 6$ has activity7 $0 \cdot Port \ 7$ no activity8 $0 \cdot Port \ 8$ no activity9 $0 \cdot Port \ 9$ no activity9 $0 \cdot Port \ 9$ no activity10 $0 \cdot Port \ 10$ no activity11 $0 \cdot Port \ 10$ no activity12 $0 \cdot Port \ 12$ no activity13 $0 \cdot Port \ 13$ no activity14 $0 \cdot Port \ 14$ no activity15 $0 \cdot Port \ 15$ no activity16 $0 \cdot Port \ 16$ no activity17 $0 \cdot Port \ 15$ no activity18 $0 \cdot Port \ 16$ no activity19 $0 \cdot Port \ 17$ no activity19 $0 \cdot Port \ 18$ no activity10 $0 \cdot Port \ 17$ no activity12 $0 \cdot Port \ 16$ no activity13 $0 \cdot Port \ 15$ no activity14 $0 \cdot Port \ 16$ no activity15 $0 \cdot Port \ 17$ no activity16 $0 \cdot Port \ 17$ no activity17 $1 \cdot Port \ 18$ has activity18 $0 \cdot Port \ 19$ no activity19 $0 \cdot Port \ 19$ no activity19 $0 \cdot Port \ 20$ no activity20 $0 \cdot Port \ 21$ no activity21 $0 \cdot Port \ 21$ no activity22 $0 \cdot Port \ 22$ no activity23 $0 \cdot Port \ 23$ no activity			
7 $0 \cdot Port 7$ no activity8 $0 \cdot Port 8$ no activity9 $0 \cdot Port 9$ no activity9 $0 \cdot Port 9$ no activity10 $0 \cdot Port 10$ no activity10 $0 \cdot Port 10$ no activity11 $0 \cdot Port 10$ no activity12 $0 \cdot Port 11$ no activity13 $0 \cdot Port 12$ no activity14 $0 \cdot Port 13$ no activity15 $0 \cdot Port 15$ no activity16 $0 \cdot Port 16$ no activity17 $1 \cdot Port 16$ has activity18 $0 \cdot Port 17$ no activity19 $0 \cdot Port 18$ no activity10 $1 \cdot Port 16$ has activity12 $0 \cdot Port 17$ no activity14 $0 \cdot Port 16$ no activity15 $0 - Port 16$ no activity16 $0 \cdot Port 17$ no activity17 $1 \cdot Port 17$ has activity18 $1 \cdot Port 18$ has activity19 $0 \cdot Port 19$ no activity19 $0 \cdot Port 20$ no activity20 $0 \cdot Port 21$ no activity21 $0 \cdot Port 21$ no activity22 $0 \cdot Port 22$ no activity23 $0 \cdot Port 23$ no activity	6		
71 - Port7has activity80 - Port8no activity90 - Port9no activity100 - Port9has activity100 - Port10no activity110 - Port10no activity120 - Port12no activity130 - Port12no activity140 - Port12no activity150 - Port13no activity140 - Port14no activity150 - Port15no activity160 - Port16no activity171 - Port16has activity180 - Port17no activity190 - Port19no activity200 - Port20no activity210 - Port21no activity220 - Port21no activity230 - Port23no activity			
8 $0 - Port 8$ $1 - Port 8$ $4 - Port 9$ $1 - Port 9$ $1 - Port 9$ $1 - Port 9$ $1 - Port 10$ $1 - Port 11$ $1 - Port 12$ $1 - Port 13$ $1 - Port 13$ $1 - Port 13$ $1 - Port 13$ $1 - Port 14$ $1 - Port 15$ $1 - Port 15$ $1 - Port 15$ $1 - Port 16$ $1 - Port 16$ $1 - Port 17$ $1 - Port 17$ $1 - Port 17$ $1 - Port 18$ $1 - Port 18$ $1 - Port 19$ $1 - Port 20$ $1 - Port 20$ $1 - Port 21 no activity1 - Port 211 - Port 211 - Port 21 no activity200 - Port 211 - Port 21 no activity1 - Port 211 - Port 22 no activity210 - Port 221 - Port 22 no activity1 - Port 22 has activity220 - Port 231 - Port 23 no activity$	7	5	
81 - Port8has activity90 - Port9no activity100 - Port10no activity101 - Port10has activity110 - Port11no activity110 - Port11no activity120 - Port12no activity130 - Port12no activity130 - Port12no activity140 - Port13no activity150 - Port14no activity160 - Port15no activity170 - Port16no activity170 - Port17no activity180 - Port17no activity190 - Port19no activity190 - Port19no activity200 - Port19no activity210 - Port21no activity220 - Port22no activity230 - Port23no activity			
9 $0 - Port$ 9no activity10 $0 - Port$ 10no activity11 $0 - Port$ 10no activity11 $0 - Port$ 11no activity11 $0 - Port$ 11no activity12 $0 - Port$ 12no activity12 $0 - Port$ 12no activity13 $0 - Port$ 12no activity13 $0 - Port$ 13no activity14 $0 - Port$ 14no activity15 $0 - Port$ 15no activity16 $0 - Port$ 15no activity17 $0 - Port$ 16no activity18 $0 - Port$ 17no activity19 $0 - Port$ 19no activity19 $0 - Port$ 19no activity20 $0 - Port$ 21no activity21 $0 - Port$ 21no activity22 $0 - Port$ 21no activity23 $0 - Port$ 23no activity	8		
9 1 - Port 9 has activity 10 0 - Port 10 no activity 11 0 - Port 11 no activity 11 0 - Port 11 no activity 12 0 - Port 12 no activity 12 0 - Port 12 no activity 13 0 - Port 12 no activity 13 0 - Port 13 no activity 14 0 - Port 14 no activity 14 0 - Port 14 no activity 14 0 - Port 14 no activity 15 0 - Port 15 no activity 16 0 - Port 16 no activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 10 - Port 19 na activity 20 0 - Port 21 no activity			
10 0 - Port 10 no activity 11 0 - Port 11 no activity 11 0 - Port 11 no activity 12 0 - Port 12 no activity 13 0 - Port 12 has activity 13 0 - Port 13 no activity 14 0 - Port 13 no activity 15 0 - Port 14 no activity 16 0 - Port 15 no activity 17 0 - Port 15 has activity 18 0 - Port 16 no activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 19 0 - Port 20 no activity 20 0 - Port 21 no activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity	9		
10 1 - Port 10 has activity 11 0 - Port 11 no activity 12 0 - Port 12 no activity 13 0 - Port 12 has activity 13 0 - Port 13 no activity 14 0 - Port 13 no activity 15 0 - Port 14 no activity 16 0 - Port 15 no activity 17 0 - Port 15 no activity 18 0 - Port 16 no activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 19 0 - Port 20 no activity 20 0 - Port 21 no activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity			
1 - Port 10 has activity110 - Port 11 no activity111 - Port 11 has activity120 - Port 12 no activity130 - Port 12 has activity130 - Port 13 no activity140 - Port 14 no activity150 - Port 15 no activity160 - Port 16 no activity170 - Port 17 no activity180 - Port 18 no activity190 - Port 19 no activity120 - Port 19 no activity131 - Port 19 has activity140 - Port 17 no activity150 - Port 17 no activity160 - Port 17 no activity170 - Port 19 no activity180 - Port 19 no activity190 - Port 20 no activity200 - Port 21 no activity210 - Port 21 no activity220 - Port 22 no activity230 - Port 23 no activity	10		
11 1 - Port 11 has activity 0 12 0 - Port 12 no activity 1 13 0 - Port 12 has activity 1 13 0 - Port 13 no activity 1 14 0 - Port 14 no activity 1 15 0 - Port 15 no activity 1 16 0 - Port 16 no activity 1 17 0 - Port 16 has activity 1 18 0 - Port 17 no activity 1 19 0 - Port 19 no activity 1 19 0 - Port 20 no activity 1 20 0 - Port 21 no activity 1 21 0 - Port 22 no activity 1 22 0 - Port 21 no activity 1 23 0 - Port 23 no activity 1			
1 - Port 11 has activity0120 - Port 12 no activity130 - Port 12 has activity130 - Port 13 no activity140 - Port 13 has activity150 - Port 14 no activity160 - Port 15 no activity170 - Port 16 no activity180 - Port 17 no activity190 - Port 18 no activity190 - Port 19 no activity200 - Port 20 no activity210 - Port 21 no activity220 - Port 22 no activity230 - Port 23 no activity	11		
12 $0 - Port 12$ no activity 13 $0 - Port 12$ has activity 13 $0 - Port 13$ no activity 14 $0 - Port 13$ has activity 14 $0 - Port 14$ no activity 15 $0 - Port 14$ has activity 16 $0 - Port 15$ no activity 17 $0 - Port 16$ no activity 17 $0 - Port 17$ no activity 18 $0 - Port 17$ no activity 19 $0 - Port 19$ no activity 10 - Port 20 no activity 11 $0 - Port 19$ no activity 12 $0 - Port 20$ no activity 19 $0 - Port 20$ no activity 10 - Port 21 no activity 20 $0 - Port 21$ no activity 21 $0 - Port 21$ no activity 22 $0 - Port 22$ no activity 23 $0 - Port 23$ no activity			0
1 - Port12 has activity130 - Port13 no activity140 - Port14 no activity140 - Port14 no activity150 - Port15 no activity160 - Port15 no activity170 - Port16 no activity170 - Port17 no activity180 - Port18 no activity190 - Port19 no activity190 - Port20 no activity200 - Port21 no activity210 - Port21 no activity220 - Port22 no activity230 - Port23 no activity	12		Ĵ,
13 1 - Port 13 has activity 14 0 - Port 14 no activity 15 0 - Port 15 no activity 15 1 - Port 15 has activity 16 0 - Port 16 no activity 17 0 - Port 16 has activity 17 0 - Port 16 has activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 10 - Port 20 no activity 20 0 - Port 21 no activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity			
1 - Port 13 has activity 14 0 - Port 14 no activity 15 0 - Port 15 no activity 15 0 - Port 15 has activity 16 0 - Port 15 has activity 17 0 - Port 16 has activity 18 0 - Port 17 no activity 19 0 - Port 19 no activity 19 0 - Port 20 no activity 20 0 - Port 21 no activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity	13		
14 1 - Port 14 has activity 15 0 - Port 15 no activity 16 0 - Port 15 has activity 16 0 - Port 16 no activity 17 0 - Port 16 has activity 18 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 20 0 - Port 20 no activity 1 - Port 20 has activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14		
15 1 - Port 15 has activity 16 0 - Port 16 no activity 17 0 - Port 16 has activity 17 0 - Port 17 no activity 18 0 - Port 18 no activity 19 0 - Port 19 no activity 1 - Port 19 has activity 20 0 - Port 20 no activity 1 - Port 20 has activity 21 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15		
10 1 - Port 16 has activity 17 0 - Port 17 no activity 17 1 - Port 17 has activity 18 0 - Port 18 no activity 19 0 - Port 18 has activity 19 0 - Port 19 no activity 20 0 - Port 20 no activity 1 - Port 20 has activity 21 0 - Port 21 no activity 1 - Port 22 has activity 22 0 - Port 22 no activity 3 0 - Port 23 no activity	10	1 - Port 15 has activity	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	0 - Port 16 no activity	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	0 - Port 17 no activity	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0 - Port 18 no activity	
19 1 - Port 19 has activity 20 0 - Port 20 no activity 1 - Port 20 has activity 21 0 - Port 21 no activity 1 - Port 21 has activity 22 0 - Port 21 no activity 22 0 - Port 22 no activity 23 0 - Port 23 no activity	10	1 - Port 18 has activity	
$\begin{array}{c ccccc} 1 & - Port & 19 & has activity \\ \hline 20 & 0 & - Port & 20 & no activity \\ 1 & - Port & 20 & has activity \\ \hline 21 & 0 & - Port & 21 & no activity \\ \hline 1 & - Port & 21 & has activity \\ \hline 22 & 0 & - Port & 22 & no activity \\ \hline 1 & - Port & 22 & has activity \\ \hline 23 & 0 & - Port & 23 & no activity \\ \hline \end{array}$	10	0 - Port 19 no activity	
20 1 - Port 20 has activity 21 0 - Port 21 no activity 1 - Port 21 has activity 1 - Port 21 has activity 22 0 - Port 22 no activity 1 - Port 22 has activity 1 - Port 22 has activity 23 0 - Port 23 no activity	19	1 - Port 19 has activity	
1 - Port 20 has activity 21 0 - Port 21 no activity 1 - Port 21 has activity 22 0 - Port 22 no activity 1 - Port 22 has activity 23 0 - Port 23 no activity		0 - Port 20 no activity	
21 0 - Port 21 no activity 1 - Port 21 has activity 22 0 - Port 22 no activity 1 - Port 22 has activity 23 0 - Port 23 no activity	20	1 - Port 20 has activity	
21 1 - Port 21 has activity 22 0 - Port 22 no activity 1 - Port 22 has activity 0 - Port 23 no activity			
22 0 - Port 22 no activity 1 - Port 22 has activity 0 - Port 23 no activity	21		
22 1 - Port 22 has activity 23 0 - Port 23 no activity		0 - Port 22 no activity	—
0 - Port 23 no activity	22		
	23		
			I

SYSCFG register (register 16)

The SYSCFG register specifies certain system configurations. The system options are described in the chapter of "Function Description." Table-7.16 describes all the bit of this register.

Table-7.16: SYSCFG Register

Bit	DIE-7.16: SYSCEG Register Description	Default
0	0 - BIST enabled; 1 - BIST disabled.	0
1	0 - Spanning Tree support disabled;	0
	1 - Spanning Tree support enabled	
2	Reserved.	0
3	Reserved.	0
4	Reserved.	0
5	0 - wait for CPU.	0
	1 - system ready to start	
	*This bit is used by the CPU when bit-15 of	
	register-25 is set as "0" (for system with	
	control CPU). The system will wait for CPU	
	to set this bit.	
6	0 - PHY Management not completed	0
	 PHY Management completed. 	
	*This bit is used by the CPU when bit-15 of	
	register-25 is set as "0" (for system with a	
	control CPU). The MAC will not start until this	
	bit is set sy the CPU.	
7	0 - Watchdog function enabled.	0
	1 - Watchdog function disabled.	
8	0 - Secure VLAN checking rule enforced.	0
	1 - Leaky VLAN checking rule enforced.	
9	0 - Rising edge of RXCLK to latch data.	0
	1 - Falling edge of RXCLK to latch data.	
	*For Reversed MII port only.	
10	0 - Late Back-Pressure scheme disabled	0
	1 - Late Back-Pressure scheme enabled	
	*When enabled, the MAC will generate back-	
	pressure only after reading the first bit of DA	
11	0 - special handling of broadcast frames	0
	disabled	
	1 - special handling of broadcast frames	
	enabled	
	*When enabled, all broadcast frames from	
	non-CPU port are forwarded to the CPU port	
	only, and all broadcast frames from the CPU	
	port are forwarded to all other ports.	
12	Software Reset: "1" to start a system reset to innitialize all state machines.	0
	Hardware Reset: "1" to stop the life pulse on	
	the watchdog pin, which in turn will trigger the	
13	external watchdog circuitry to reset the whole	
	system.	
14	Reserved	0
14	Reserved	0
10		U

INTMSK register (register 17)

The INTMSK register defines the valid interrupt sources allowed to assert interrupt request pin. Table-7.17 lists all the bits of this register.

Table-7.17: INTMSK Register

Bit	Description	Default
0	Enable "system initialization	1
0	completion" to interrupt	1
1	Enable "internal system error"	1
'	to interrupt	I
2	Enable "port partition event"	4
2	to interrupt	I
3	Reserved	1
4	Reserved	1
5	Reserved	1
6	Reserved	1
7	Reserved	1

SPEED register (register 18)

The SPEED register specifies or indicates the speed rate of each port. It is read-only, unless the bit-12 of register-25 is set (through POS to disable automatic PHY management). At read-only mode, it indicates the speed achieved through PHY management. At the write-able mode, the control CPU will be able to assign speed rate for each port. Table-7.18 describes all the bit of this register.

LINK register (register 19)

The LINK register specifies or indicates the link status of each port. It is read-only, unless bit-12 of register-25 is set (through POS, to disable automatic PHY management). At read-only mode, it indicates the result achieved by PHY management. At write-able mode,

Table-7.18: SPEED Register

Table-7.18: SPEED Register			
Bit	Description	Default	
0	0 - Port 0 at 10 Mbps		
0	1 - Port 0 at 100 Mbps		
1	0 - Port 1 at 10 Mbps		
I	1 - Port 1 at 100 Mbps		
2	0 - Port 2 at 10 Mbps		
2	1 - Port 2 at 100 Mbps		
3	0 - Port 3 at 10 Mbps		
3	1 - Port 3 at 100 Mbps		
4	0 - Port 4 at 10 Mbps		
4	1 - Port 4 at 100 Mbps		
F	0 - Port 5 at 10 Mbps		
5	1 - Port 5 at 100 Mbps		
<u> </u>	0 - Port 6 at 10 Mbps		
6	1 - Port 6 at 100 Mbps		
7	0 - Port 7 at 10 Mbps		
7	1 - Port 7 at 100 Mbps		
	0 - Port 8 at 10 Mbps		
8	1 - Port 8 at 100 Mbps		
	0 - Port 9 at 10 Mbps		
9	1 - Port 9 at 100 Mbps		
	0 - Port 10 at 10 Mbps		
10	1 - Port 10 at 100 Mbps		
	0 - Port 11 at 10 Mbps		
11	1 - Port 11 at 100 Mbps		
	0 - Port 12 at 10 Mbps	0	
12	1 - Port 12 at 10 Mbps		
	0 - Port 13 at 10 Mbps		
13	1 - Port 13 at 100 Mbps		
	0 - Port 14 at 10 Mbps		
14	1 - Port 14 at 100 Mbps		
	0 - Port 15 at 10 Mbps		
15	1 - Port 15 at 100 Mbps		
	0 - Port 16 at 10 Mbps		
16	1 - Port 16 at 100 Mbps		
	0 - Port 17 at 10 Mbps		
17	1 - Port 17 at 100 Mbps		
	0 - Port 18 at 10 Mbps		
18	1 - Port 18 at 100 Mbps		
	0 - Port 19 at 10 Mbps		
19	1 - Port 19 at 10 Mbps		
20	0 - Port 20 at 10 Mbps		
	1 - Port 20 at 100 Mbps		
21	0 - Port 21 at 10 Mbps		
	1 - Port 21 at 100 Mbps		
22	0 - Port 22 at 10 Mbps		
	1 - Port 22 at 100 Mbps		
23	0 - Port 23 at 10 Mbps		
	1 - Port 23 at 100 Mbps		

the control CPU can assign link status for each port. Table-7.19 describes all the bit of this register.

nFWD register (register 20)

The nFWD register defines the forwarding mode of each port. Under *forwarding* mode, a port can forward

Table-7.19: LINK Register

	1.19: LINK Register	
Bit	Description	Default
0	0 - Port 0 link not established	
Ŭ	1 - Port 0 link established	
1	0 - Port 1 link not established	
1	1 - Port 1 link established	
2	0 - Port 2 link not established	
2	1 - Port 2 link established	
3	0 - Port 3 link not established	
3	1 - Port 3 link established	
4	0 - Port 4 link not established	
4	1 - Port 4 link established	
5	0 - Port 5 link not established	
5	1 - Port 5 link established	
6	0 - Port 6 link not established	
0	1 - Port 6 link established	
7	0 - Port 7 link not established	
	1 - Port 7 link established	
	0 - Port 8 link not established	
8	1 - Port 8 link established	
	0 - Port 9 link not established	
9	1 - Port 9 link established	
10	0 - Port 10 link not established	
10	1 - Port 10 link established	
44	0 - Port 11 link not established	
11	1 - Port 11 link established	0
40	0 - Port 12 link not established	0
12	1 - Port 12 link established	
40	0 - Port 13 link not established	
13	1 - Port 13 link established	
14	0 - Port 14 link not established	
14	1 - Port 14 link established	
15	0 - Port 15 link not established	
15	1 - Port 15 link established	
16	0 - Port 16 link not established	
10	1 - Port 16 link established	
17	0 - Port 17 link not established	
17	1 - Port 17 link established	
40	0 - Port 18 link not established	
18	1 - Port 18 link established	
10	0 - Port 19 link not established	
19	1 - Port 19 link established	
	0 - Port 20 link not established	
20	1 - Port 20 link established	
	0 - Port 21 link not established	
21	1 - Port 21 link established	
60	0 - Port 22 link not established	1
22	1 - Port 22 link established	
66	0 - Port 23 link not established	1
23	1 - Port 23 link established	
		1

all frames. Under *block-and-listen* mode, a port will not forward regular frames, except BPDU frames. If the spanning tree algorithm discovers redundant links, the control CPU will allow only one link remaining in *forwarding* mode and force all other links into *blockand-listen* mode. Setting the associated bit in this register will put the port into *block-and-listen* mode. Table-7.20 describes all the bit of this register.

Table-7.20: nFWD Register

Table-7.20: nFWD Register			
Bit		Description	Default
0	0 - Port 0	in forwarding state	
0	1 - Port 0	in block-and-listen state	
1	0 - Port 1	in forwarding state	
-	1 - Port 1	in block-and-listen state	
2	0 - Port 2	in forwarding state	
2	1 - Port 2	in block-and-listen state	
3	0 - Port 3	in forwarding state	
0	1 - Port 3	in block-and-listen state	
4	0 - Port 4	in forwarding state	
	1 - Port 4	in block-and-listen state	
5	0 - Port 5	in forwarding state	
-	1 - Port 5	in block-and-listen state	
6	0 - Port 6	in forwarding state	
-	1 - Port 6	in block-and-listen state	
7	0 - Port 7	in forwarding state	
	1 - Port 7	in block-and-listen state	
8	0 - Port 8	in forwarding state	
	1 - Port 8		
9	0 - Port 9	in forwarding state	
		in block-and-listen state	
10		in forwarding state	
		in block-and-listen state	
11		in forwarding state	
		in block-and-listen state	0
12		in forwarding state	
		in block-and-listen state in forwarding state	
13		in block-and-listen state	
		in forwarding state	
14		in block-and-listen state	
		in forwarding state	
15		in block-and-listen state	
		in forwarding state	
16		in block-and-listen state	
4-		in forwarding state	
17		in block-and-listen state	
40		in forwarding state	
18		in block-and-listen state	
10		in forwarding state	
19		in block-and-listen state	
20	0 - Port 20	in forwarding state	
20	1 - Port 20	in block-and-listen state	
21	0 - Port 21	in forwarding state	
<u> </u>		in block-and-listen state	
22		in forwarding state	
22		in block-and-listen state	
23		in forwarding state	
20	1 - Port 23	in block-and-listen state	

Data Sheet: ACD82124

INTRODUCTORY

nBP register (register 21)

The nBP register defines back-pressure flow control capability for each port. Table-7.21 describes all the bit of this register.

Table-7.21: nBP Register

	Decerimtian	Defeult
Bit	Description	Default
0	0 - Port 0 back-pressure scheme enabled	
<u> </u>	1 - Port 0 back-pressure scheme disabled	
1	0 - Port 1 back-pressure scheme enabled	
	1 - Port 1 back-pressure scheme disabled	
2	0 - Port 2 back-pressure scheme enabled	
	1 - Port 2 back-pressure scheme disabled	
3	0 - Port 3 back-pressure scheme enabled	
	1 - Port 3 back-pressure scheme disabled	
4	0 - Port 4 back-pressure scheme enabled	
	1 - Port 4 back-pressure scheme disabled	
5	0 - Port 5 back-pressure scheme enabled	
	1 - Port 5 back-pressure scheme disabled	
6	0 - Port 6 back-pressure scheme enabled	
	1 - Port 6 back-pressure scheme disabled	
7	0 - Port 7 back-pressure scheme enabled	
	1 - Port 7 back-pressure scheme disabled 0 - Port 8 back-pressure scheme enabled	
8		
	1 - Port 8 back-pressure scheme disabled 0 - Port 9 back-pressure scheme enabled	
9		
	1 - Port 9 back-pressure scheme disabled	
10	0 - Port 10 back-pressure scheme enabled	
	1 - Port 10 back-pressure scheme disabled	
11	0 - Port 11 back-pressure scheme enabled	
	1 - Port 11 back-pressure scheme disabled 0 - Port 12 back-pressure scheme enabled	0
12	1 - Port 12 back-pressure scheme disabled	
	0 - Port 13 back-pressure scheme enabled	
13	1 - Port 13 back-pressure scheme disabled	
	0 - Port 14 back-pressure scheme enabled	
14	1 - Port 14 back-pressure scheme disabled	
	0 - Port 15 back-pressure scheme enabled	
15	1 - Port 15 back-pressure scheme disabled	
	0 - Port 16 back-pressure scheme enabled	
16	1 - Port 16 back-pressure scheme disabled	
	0 - Port 17 back-pressure scheme enabled	
17	1 - Port 17 back-pressure scheme disabled	
	0 - Port 18 back-pressure scheme enabled	
18	1 - Port 18 back-pressure scheme disabled	
40	0 - Port 19 back-pressure scheme enabled	
19	1 - Port 19 back-pressure scheme disabled	
	0 - Port 20 back-pressure scheme enabled	
20	1 - Port 20 back-pressure scheme disabled	
	0 - Port 21 back-pressure scheme enabled	
21	1 - Port 21 back-pressure scheme disabled	
	0 - Port 22 back-pressure scheme enabled	
22	1 - Port 22 back-pressure scheme disabled	
20	0 - Port 23 back-pressure scheme enabled	1
23	1 - Port 23 back-pressure scheme disabled	
		•

nPORT register (register 22)

The nPORT register is used to isolate ports from the network. Setting the associated bit in this register will stop a port from receiving or transmitting any frame. Table-7.22 describes all the bits of this register.

Bit	7.22: nPort Register Description	Default
	0 - Port 0 enabled	Delault
0	1 - Port 0 disabled	
	0 - Port 1 enabled	-
1	1 - Port 1 disabled	
	0 - Port 2 enabled	
2	1 - Port 2 disabled	
	0 - Port 3 enabled	
3	1 - Port 3 disabled	
	0 - Port 4 enabled	
4	1 - Port 4 disabled	
	0 - Port 5 enabled	
5	1 - Port 5 disabled	
	0 - Port 6 enabled	-
6	1 - Port 6 disabled	
	0 - Port 7 enabled	1
7	1 - Port 7 disabled	
	0 - Port 8 enabled	
8	1 - Port 8 disabled	
	0 - Port 9 enabled	
9	1 - Port 9 disabled	
	0 - Port 10 enabled	
10	1 - Port 10 disabled	
	0 - Port 11 enabled	
11	1 - Port 11 disabled	
	0 - Port 12 enabled	0
12	1 - Port 12 disabled	
	0 - Port 13 enabled	-
13	1 - Port 13 disabled	
	0 - Port 14 enabled	-
14	1 - Port 14 disabled	
	0 - Port 15 enabled	1
15	1 - Port 15 disabled	
	0 - Port 16 enabled	1
16	1 - Port 16 disabled	
	0 - Port 17 enabled	1
17	1 - Port 17 disabled	
	0 - Port 18 enabled	1
18	1 - Port 18 disabled	
	0 - Port 19 enabled	1
19	1 - Port 19 disabled	
	0 - Port 20 enabled	1
20	1 - Port 20 disabled	
	0 - Port 21 enabled	1
21	1 - Port 21 disabled	
	0 - Port 22 enabled	1
22	1 - Port 22 disabled	
	0 - Port 23 enabled	1
23	1 - Port 23 disabled	
		I

PVID registers (register 23)

The PVID registers assign VLAN IDs for each port. There are 24 PVID registers, one for each port. A PVID consists of 4 bits, each corresponding to one of the 4 VLANs. A port can belong to more than one VLAN at the same time. Table-7.23 describes the bits of one of the registers.

I able-1			
Bit	Description	Default	
0	0 - port not in VLAN-I.	1	
	1 - port in VLAN-I.		
1	0 - port not in VLAN-II.	0	
	1 - port in VLAN-II.		
2	0 - port not in VLAN-III.	0	
	1 - port in VLAN-III.		
3	0 - port not in VLAN-IV.	0	
	1 - port in VLAN-IV.		

Table-7.23: PVID Registers (24 registers)

VPID registers (register 24)

The VPID registers specify the dumping port for each VLAN. There are 4 VPID 5-bit registers, one for each VLAN. A valid VPID are "0" through "23" (other values are reserved and should not used). Table-7.24 describes the bits one of the registers.

Table-7.24: VPID Registers (4 registers)

Bit	Description	Default
4:0	Dumping port ID for VLAN-1	"00000"
4:0	Dumping port ID for VLAN-2	"11111"
4:0	Dumping port ID for VLAN-3	dumping port
4:0	Dumping port ID for VLAN-4	not defined

Bit	Description	Default
3:0	8 timing adjustment levels for SRAM Read data latching:	0000
	0000 - no delay	
	0001 - level 1 delay	
	0011 - level 2 delay	
	0101 - level 3 delay	
	0111 - level 4 delay	
	1001 - level 5 delay	
	1011 - level 6 delay	
	1101 - level 7 delay	
	1111 - level 8 delay	
4	0 - Absolute address mode: 1 row of 512K words, nCS2=ADDR17, nCS3=ADDR18	0
	1 - Chip-Select address mode: 4 rows of 128K words, nCS[3:0] to select 4 rows of memory	
6:5	SRAM size selection:	000
	00 - 64K words	
	01 - 128K words	
	10 - 256k words	
	11 - 512K words	
7	0 - Long Event defined as frame longer than 1518 byte.	0
	1 - Long Event defined as frame longer than 1530 byte.	
8	0 - Frames with unknown DA forwarded to the dumping port.	0
	1 - Frames with unknown DA forwarded to all ports.	
9	0 - Internal ARL selected (2K MAC address entry).	0
	1 - External ARL selected (11K MAC address entry).	
10	0 - PHY IDs start from 1, range from 1 to 24.	0
	1 - PHY IDs start from 4, range from 4 to 27.	
11	0 - Re-transmit after excessive collision.	0
	1 - Drop after excessive collision.	
12	0 - Automatic PHY Management enabled	0
	1 - Automatic PHY Management disabled: the control CPU need to update the SPEED, LINK, DPLX and	
	nPAUSE registers	
13	0 - Rising edge of RxClk triggering for regular MII ports	0
	0 - Falling edge of RxClk triggering for regular MII ports	
14	0 - Sysem errors will trigger software reset	0
	1 - Sysem errors will trigger hardware reset	
15	0 - System start itself without a control CPU	0
	1 - System start after system-ready bit in register-16 is set by the control CPU	
17:16	2-bit device ID for UART communication. The device responses only to UART commands with	00
17.10	matching ID	00
18	0 - Rising edge of ARLCLK to latch ARLDI.	0
	1 - Falling edge of ARLCLK to latch ARLDI.	

Table-7.25: POSCFG Register

POSCFG register (register 25)

The POSCFG register specifies a certain configuration setting for the switch system. The default values of this register can be changed through pull-up/pull-down of specific pins, as described in the "Configuration Interface" section of the "Interface Description" chapter. Table-7.25 describes all the bit of this register.

FdEn register (register 26)

FdEn register is used to specify if an even numbered port has been connected as a full duplex port. The

default value of FdCfg is determined by Pull-High or Pull-Low status of the hardware pins shown in Table-26.

DPLX register (register 27)

The DPLX register specifies or indicates the half/fullduplex mode of each of the 12 even-numbered ports (*port 0, 2, 4, .. 20 and 22*). It is read-only, unless bit-12 of register-25 is set (through POS, to disable automatic PHY management). At read-only mode, it indicates the result achieved by the PHY management. At write-able mode, the control CPU can assign a halfduplex or full-duplex mode for each of the 12 even-

Bit	Description	Default
0	0 - Port 0 & 1 each in Half-Duplex mode	
0	1 - Port 0 & 1 paired into ONE Full-Duplex-Capable port	
1	0 - Port 2 & 3 each in Half-Duplex mode	
I	1 - Port 2 & 3 paired into ONE Full-Duplex-Capable port	
2	0 - Port 4 & 5 each in Half-Duplex mode	
2	1 - Port 4 & 5 paired into ONE Full-Duplex-Capable port	
3	0 - Port 6 & 7 each in Half-Duplex mode	
3	1 - Port 6 & 7 paired into ONE Full-Duplex-Capable port	
4	0 - Port 8 & 9 each in Half-Duplex mode	
4	1 - Port 8 & 9 paired into ONE Full-Duplex-Capable port	
5	0 - Port 10 & 11 each in Half-Duplex mode	
5	1 - Port 10 & 11 paired into ONE Full-Duplex-Capable port	0
6	0 - Port 12 & 13 each in Half-Duplex mode	0
0	1 - Port 12 & 13 paired into ONE Full-Duplex-Capable port	
7	0 - Port 14 & 15 each in Half-Duplex mode	
/	1 - Port 14 & 15 paired into ONE Full-Duplex-Capable port	
8	0 - Port 16 & 17 each in Half-Duplex mode	
0	1 - Port 16 & 17 paired into ONE Full-Duplex-Capable port	
9	0 - Port 18 & 19 each in Half-Duplex mode	
9	1 - Port 18 & 19 paired into ONE Full-Duplex-Capable port	
10	0 - Port 20 & 21 each in Half-Duplex mode	
10	1 - Port 20 & 21 paired into ONE Full-Duplex-Capable port	
11	0 - Port 22 & 23 each in Half-Duplex mode	
11	1 - Port 22 & 23 paired into ONE Full-Duplex-Capable port	

Table-7.26: FdEn Register

Table-7.27: DPLX Register

Bit	Description	Default
0	0 - Port 0 & 1 run as TWO independant Half-Duplex ports	
0	1 - Port 0 & 1 pair run as ONE Full-Duplex port	
1	0 - Port 2 & 3 run as TWO independant Half-Duplex ports	
	1 - Port 2 & 3 pair run as ONE Full-Duplex port	
2	0 - Port 4 & 5 run as TWO independant Half-Duplex ports	
2	1 - Port 4 & 5 pair run as ONE Full-Duplex port	
3	0 - Port 6 & 7 run as TWO independant Half-Duplex ports	
5	1 - Port 6 & 7 pair run as ONE Full-Duplex port	
4	0 - Port 8 & 9 run as TWO independant Half-Duplex ports	
4	1 - Port 8 & 9 pair run as ONE Full-Duplex port	
5	0 - Port 10 & 11 run as TWO independant Half-Duplex ports	
5	1 - Port 10 & 11 pair run as ONE Full-Duplex port	0
6	0 - Port 12 & 13 run as TWO independant Half-Duplex ports	0
0	1 - Port 12 & 13 pair run as ONE Full-Duplex port	
7	0 - Port 14 & 15 run as TWO independant Half-Duplex ports	
1	1 - Port 14 & 15 pair run as ONE Full-Duplex port	
8	0 - Port 16 & 17 run as TWO independant Half-Duplex ports	
0	1 - Port 16 & 17 pair run as ONE Full-Duplex port	
9	0 - Port 18 & 19 run as TWO independant Half-Duplex ports	
9	1 - Port 18 & 19 pair run as ONE Full-Duplex port	
10	0 - Port 20 & 21 run as TWO independant Half-Duplex ports	
10	1 - Port 20 & 21 pair run as ONE Full-Duplex port	
11	0 - Port 22 & 23 run as TWO independant Half-Duplex ports]
	1 - Port 22 & 23 pair run as ONE Full-Duplex port	

number ports. Table-7.27 describes all the bits of this register.

RVSMII register (register 28)

The RVSMII register defines the *reversed MII* mode for each port. Table-7.28 describes all the bits of this register.

Table-7.28: RVSMII register

Bit	Description	Default
0	0 - Port 0 under normal MII mode	0
	1 - Port 0 under reversed MII mode	
1	0 - Port 1under normal MII mode	0
	1 - Port 1 under reversed MII mode	
2	0 - Port 2 under normal MII mode	0
	1 - Port 2under reversed MII mode	
3	0 - Port 3 under normal MII mode	0
	1 - Port 3 under reversed MII mode	
4	0 - Port 4 under normal MII mode	0
	1 - Port 4 under reversed MII mode	
5	1 - Port 5 under normal MII mode	0
	2 - Port 5 under reversed MII mode	
6	1 - Port 6 under normal MII mode	0
	2 - Port 6 under reversed MII mode	
7	1 - Port 7 under normal MII mode	0
	2 - Port 7 under reversed MII mode	
8	1 - Port 22 under normal MII mode	0
	2 - Port 22 under reversed MII mode	
9	1 - Port 23 under normal MII mode	0
	2 - Port 23 under reversed MII mode	

nPM register (register 29)

The nPM register indicates the automatic PHY management capability of each port. If a bit is set in this register, the corresponding SPEED, LINK, DPLX, and nPAUSE status registers of a port will remain unchanged. Table-7.29 describes all the bits of this register.

Table-7.29: nPM Register

Bit	Description	Default
Ы	0 - Port 0 status update enabled	Delault
0		
		-
1	•	
	1 - Port 1 status update disabled	-
2	0 - Port 2 status update enabled	
	1 - Port 2 status update disabled	-
3	0 - Port 3 status update enabled	
	1 - Port 3 status update disabled	_
4	0 - Port 4 status update enabled	
	1 - Port 4 status update disabled	_
5	0 - Port 5 status update enabled	
Ŭ	1 - Port 5 status update disabled	
6	0 - Port 6 status update enabled	
Ŭ	1 - Port 6 status update disabled	
7	0 - Port 7 status update enabled	
'	1 - Port 7 status update disabled	
8	0 - Port 8 status update enabled	
0	1 - Port 8 status update disabled	
9	0 - Port 9 status update enabled	
9	1 - Port 9 status update disabled	
10	0 - Port 10 status update enabled	
10	1 - Port 10 status update disabled	
44	0 - Port 11 status update enabled	
11	1 - Port 11 status update disabled	
40	0 - Port 12 status update enabled	0
12	1 - Port 12 status update disabled	
10	0 - Port 13 status update enabled	
13	1 - Port 13 status update disabled	
	0 - Port 14 status update enabled	
14	1 - Port 14 status update disabled	
	0 - Port 15 status update enabled	-
15	1 - Port 15 status update disabled	
	0 - Port 16 status update enabled	
16	1 - Port 16 status update disabled	
	0 - Port 17 status update enabled	
17	1 - Port 17 status update disabled	
	0 - Port 18 status update enabled	-
18	1 - Port 18 status update disabled	
	0 - Port 19 status update enabled	-
19	1 - Port 19 status update disabled	
	0 - Port 20 status update enabled	-
20	1 - Port 20 status update disabled	
	0 - Port 21 status update enabled	-
21		
	1 - Port 21 status update disabled	-
22	0 - Port 22 status update enabled	
<u> </u>	1 - Port 22 status update disabled	-
23	0 - Port 23 status update enabled	
	1 - Port 23 status update disabled	

ERRMSK register (register 30)

The ERRMSK register defines certain errors as system errors. It is reserved for factory use only. Table-7.30 lists all the error masks specified by this register.

lable-7.3		
Bit	Description	Setting
0	Reserved	
1	Reserved	All "1", unless
2	Reserved	otherwise
3	Reserved	advised, to
4	Reserved	ensure proper
5	Reserved	operation.
6	Reserved	
7	Reserved	0

Table-7 30[•] FRRMSK register

CLKADJ register (register 31)

The CLKADJ register defines the delay time of the ARLCLK relative to the transition edge of the data signals. The ARLCLK provides reference timing for supporting chips, such as the ACD80800 and the ACD80900, which need to snoop the data bus for certain activities. Table-7.31 describes all the bits of this register.

|--|

Bit	Description	Default
0	0 - ARLCLK not inverted	0
	1 - ARLCLK inverted	
3:1	ARLCLK delay levels:	000
	000 - level 0 delay	
	001 - level 1 delay	
	010 - level 2 delay	
	011 - level 3 delay	
	100 - level 4 delay	
	101 - level 5 delay	
	110 - level 6 delay	
	111 - level 7 delay	

PHYREG registers (register 32-63)

The PHYREG refers to the registers residing on the PHY devices. There are 24 sets of these registers. Each port has its own corresponding set of register 32-63. The ACD82124 merely provides an access path for the control CPU to access the registers on the PHYs. For detailed information about these registers, please refer to the PHY data sheet.

Since the native registers ID "0" through "31" on the PHYs have been used by the internal registers of the ACD82124, they need to be re-mapped into "32" through "63" by adding "32" to each original register ID. An index is used by the ACD82124 to specify the PHY ID. For example, register-32 with index-4 would refer to the control register (register-0) in the PHY-4.

J

INTRODUCTORY

Bottom	View	

<u>Pin Diagram</u>

AJ AG AE AC AA

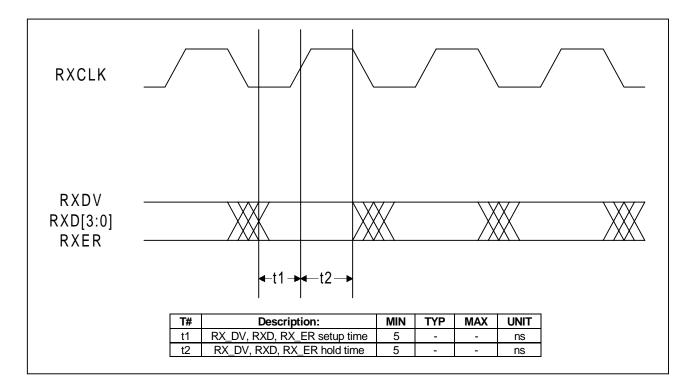
Pin	Signal Name	I∕O Type	Pin	Signal Name	l/O Type	Pin	Signal Name	l/O Type	Pin	Signal Name	l/O Type
A01	P23RXD0R	1	C13	P20RXCLK	Ι	E 25	P16T XD1	0	K01	DAT A40	Q۱
A02	VDD		C14	P 20T X D0	0	E 26	VDD		K02	DAT A39	١/D
A03	P23T XD2R	0	C15	P19RXD3	1	E 27	P15RXCLK		K03	ADDR2	0
A04 A05	P 22R X D3R P 22R X E RR	1	C16 C17	P19RXCLK P19TXD0	I O	E 28 E 29	P15T XD3 P14RXD0	0	K04 K05	nCS 3 VDD	0
A05 A06	P 22T XD1R	0	C18	P19COL	I	E 30	P14T XEN	Ó	K05	VSS	
A07	P 22T X D3R	0	C19	P18RXD1	I	F01	DAT A48	I/O	K 25	VS S	
A08	P21RXD0	I	C20	P18RXER	I	F 02	DAT A47	U/D	K 26	VDD	
A09	P21T XCLK		C21 C22	P18T XD1	0	F 03 F 04	ARLDI3		K27 K28	P13RXD0	
A10 A11	P21TXD0 P20RXD3	0	C22 C23	P17RXD2 P17RXCLK	1	F 04 F 05	ARLCLK ARLSYNC	0	K 28 K 29	P13T XCLK P13T XD1	0
A12	P20RXD0	i	C24	P17T XD2	Ö	F 06	VSS	0	K30	P13T XD2	Õ
A13	P 20T X CL K	I	C25	P17CRS	I	F 07	P23RXERR	I	L01	DAT A38	٨.
A14	P20T XD2	0	C26	P16RXD0		F 08	VS S		L02	DAT A37	QI
A15 A16	P19RXD1 P19RXD0	1	C27 C28	P 16T X D3 P 15R X D2	0	F 09 F 10	P 22R X D1R VS S	I	L03 L04	ADDR3 nCS2	0
A10	P 19T XCLK	I	C20 C29	P 15T X D0	Ö	F 10	P22CRSR	١/O	L04	VDD	0
A18	P19T XD2	0	C30	P15COL	I	F12	VS S		L06	VS S	
A19	VS S		D01	STAT3	0	F13	P21COL	I	L 25	P13RXD2	I
A20	P18RXDV	I O	D02 D03	DAT A51	I/O I	F 14 F 15	VS S P 20T X D3	0	L 26 L 27	P13RXD1	I O
A21 A22	P18TXEN P18CRS	U I	D03 D04	ARLDIO P23RXD3R	1	F 15 F 16	VS S	0	L27 L28	P 13T XE N P 13T X D3	0
A23	P17RXD1	i	D05	P23RXCLKR	ı,O	F 17	VSS		L 29	P13COL	I
A24	P17RXER	I	D06	P 23T X DOR	0	F 18	P18RXD2	I	L 30	P12RXD1	I.
A25	P17T XD3	0	D07	P23COLR	I/O	F 19	VSS	0	M01	DAT A36	I/O
A26 A27	P16RXD2 P16RXER	1	D08 D09	P 22R X DVR P 22T X D0R	I O	F 20 F 21	P 18T X D3 VS S	Ο	M02 M03	DAT A35 nCS 0	
A28	P16T XD0	Ó	D10	P21RXD2	I	F 22	P17T XD0	Ο	M04	ADDR16	0
A29	P16CRS	I	D11	P21RXER	I	F 23	VS S		M05	VDD	
A30	P15RXD0	I	D12	P21T XD3	0	F 24	P16T XCLK	I	M06	VS S	
B01 B02	STATO P23RXD1R	0	D13 D14	P20RXDV	I O	F 25 F 26	VS S P 15R X DV	I	M25 M26	VS S VDD	
B02 B03	P23RXDIR P23TXCLKR	I/O	D14 D15	P 20T XE N P 20CR S	U I	F 20 F 27	P 15K X DV P 15T X D2	0	M27	P13CRS	I
B04	P23T XD3R	0	D16	P19RXDV	i	F 28	P14RXD2	I	M28	P12RXD0	Ì
B05	P22RXD2R	I	D17	P19T XD1	0	F 29	P14T XD0	0	M29	P12RXDV	I
B06	P22T XCLKR	I/O	D18	P19CRS	I	F 30	P14T XD3	0	M30	P12RXCLK	
B07 B08	P22T XD2R P21RXD1	0	D19 D20	P18RXD0 P18TXCLK	1	G01 G02	DAT A46 DAT A45		N01 N02	DAT A34 DAT A33	0,1 0,1
B09	P21RXDV	i	D20	P18COL	i	G03	ARL DIR0	0	N02	VDD	1/0
B10	P21T XEN	0	D22	P17RXD0	I	G04	ARL DIR1	Ō	N04	ADDR15	0
B11	P21T XD2	0	D23	P17T XD1	0	G05	VDD		N05	VDD	
B12 B13	P20RXD1	1	D24	P16RXD3	1	G06 G25	VS S P 15R XE R	I	N06 N25	VS S P 12R X D3	
В13 В14	P20RXER P20TXD1	0	D25 D26	P16RXCLK P16TXD2	0	G25 G26	P 15RXER P 15T XD1	0	N25 N26	P12RXD3 P12RXD2	1
B15	P19RXD2	I	D27	P15RXD3	I	G27	P14RXD3	I	N27	P12RXER	i
B16	P19RXER	I	D28	P15T XCLK	I	G28	P14T XCLK	I	N28	P12T XCLK	I
B17	P19TXEN	0	D29	P15CRS	1	G29	P14COL	1	N29	P12T XEN	0
B18 B19	P 19T X D3 VDD	0	D30 E 01	P14RXD1 DAT A50	I I/O	G30 H01	P14CRS DAT A44	I I/O	N30 P01	P12T X D0 DAT A32	0 1/0
B20	P18RXCLK	I	E 02	DAT A49	I/O	H02	DAT A44 DAT A43	I/O	P02	DAT A32	I/O
B21	P18T XD0	Ο	E 03	ARL DI2	I	H03	ADDR0	Ο	P03	nWE	0
B22	P17RXD3	I	E 04	ARL DI1	I	H04	ARLDIV	I	P04	VSS	
B23 B24	P17RXDV P17TXCLK		E 05 E 06	VDD P23RXDVR	I	H05 H06	VDD VS S		P05 P06	VDD VS S	
B24 B25	P17COL	1	E 00	P23TXENR	0	H00 H25	VSS		P 00 P 25	VSS	
B26	P16RXD1	i	E 08	VDD	0	H26	VDD		P26	VDD	
B27	P16TXEN	0	E 09	P22RXD0R	I	H27	P14RXER	I	P27	P12T X D1	Ο
B28	P16COL		E 10	VDD		H28	P14T XD1	0	P28	P12T XD2	0
B 29 B 30	P15RXD1 P15T XEN	I O	E 11 E 12	P21RXD3 VDD	Ι	H29 H30	P13RXDV P13RXCLK	1	P29 P30	P12TXD3 P12COL	0
C01	ST AT 1	0	E 12	P21CRS	I	J01	DAT A42	I/O	R01	DAT A30	ı,O
C02	STAT2	Ō	E 14	VDD		J02	DAT A41	I/O	R02	DAT A29	U/D
C03	P23RXD2R	I	E 15	P20COL	I	J03	ADDR1	0	R03	ADDR4	0
C04 C05	VS S P 23T X D1R	Ο	E 16 E 17	VDD VDD		J04 J05	nCS 1 VDD	0	R04 R05	nOE VDD	O/۱
C05	P23IXDIR P23CRSR	0 I/O	E 17 E 18	P18RXD3	I.	J05 J06	VDD VS S		R05 R06	VDD VS S	
C07	P22RXCLKR	I/O	E 10	VDD		J25	P14RXDV	I	R25	P12CRS	L
C08	P 22T XE NR	0	E 20	P18T XD2	0	J26	P14RXCLK	I	R26	P11RXD3	I.
C09	P22COLR	I/O	E 21		~	J27	P14T XD2	0	R27	P11RXD2	
C10 C11	P21RXCLK P21TXD1	I O	E 22 E 23	P 17T XE N VDD	0	J28 J29	P13RXD3 P13RXER	1	R28 R29	P11RXD1 P11RXD0	I
C12	P20RXD2	I	E 24	P16RXDV	<u> </u>	J30	P13T XD0	0	R30	P11RXDV	<u> </u>

Pin List By Location: Part 1

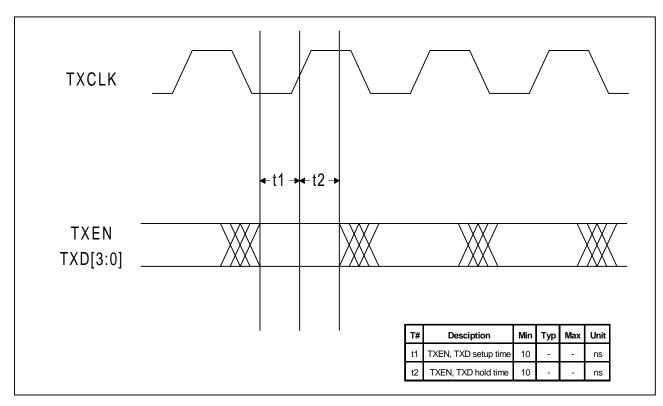
Pin Signal VO Pin				-								
Name Type Name Type Name Type Name Type 101 DAA A28 LO ABE1 DAA A55 LO ARE1 DAA A55 LO ARE1 DAA A55 LO ARE1 DAA A55 LO ARE5 VDD	Pin	-		Pin	-		Pin	_		Pin	-	
TO DATA?? I/O ARIBS V/D ARIBS V/DS ARIDS PEXACLRS I/O TO3 AADRES O ARBS V/DD AR10 V/DD AR12 PEXACLRS I/O TO3 AADRES O AR15 PIXTERS I AR12 PEXACLRS I/O TO3 AADRES V/DD AR15 PEXACLRS I/O AR12 PEXACLRS I/O TO3 AADRES V/DD AR15 PEXACLRS I/O AR12 PEXACLRS I/O AR12 PEXACLRS I/O AR12 PEXACLRS I/O AR14 V/DD AR14 PEXACDRS I/O AR14 <td< th=""><th>• •••</th><th>Name</th><th>Туре</th><th></th><th>Name</th><th>Туре</th><th>• •••</th><th>Name</th><th>Type</th><th>• •••</th><th>Name</th><th>Туре</th></td<>	• •••	Name	Туре		Name	Туре	• •••	Name	Type	• •••	Name	Туре
TO DATA?? I/O ARIBS V/D ARIBS V/DS ARIDS PEXACLRS I/O TO3 AADRES O ARBS V/DD AR10 V/DD AR12 PEXACLRS I/O TO3 AADRES O AR15 PIXTERS I AR12 PEXACLRS I/O TO3 AADRES V/DD AR15 PEXACLRS I/O AR12 PEXACLRS I/O TO3 AADRES V/DD AR15 PEXACLRS I/O AR12 PEXACLRS I/O AR12 PEXACLRS I/O AR12 PEXACLRS I/O AR14 V/DD AR14 PEXACDRS I/O AR14 <td< td=""><td>T 01</td><td>DAT A28</td><td>I/O</td><td>AB01</td><td>DAT A16</td><td>U/D</td><td>AF 07</td><td>POT XE NR</td><td>0</td><td>AH19</td><td>P4RXD0R</td><td></td></td<>	T 01	DAT A28	I/O	AB01	DAT A16	U/D	AF 07	POT XE NR	0	AH19	P4RXD0R	
Tots VDD ANDE LED API PERXIDR I API PERXIDR I <thapi< th=""> PERXIDR API<td>T 02</td><td></td><td></td><td>AB02</td><td></td><td>I/O</td><td></td><td></td><td></td><td>AH20</td><td>P5T XD3R</td><td></td></thapi<>	T 02			AB02		I/O				AH20	P5T XD3R	
TOS VDD A465 VDD AF11 PIRKORR I AH23 PERXIDIR I/O T25 VSS A425 VSS AF12 VDD I AH26 PIRXIDIR I AH27 PIRXIDIR I AH28 PIRXIDIR I AH29 PIRXIDI									۵,۱			
TOG VSS AB36 VSS AF13 PPRIX1R IADS PPRIX2LR ILD T25 VSS AF13 PPRIX0R I AH34 PPRIX0R I T37 PTRER I AF13 PPRIX0R I AH34 PPRIX0R I T37 PTRER I AF17 PPRIX0R I AH16		ADDR14	0			١ <i>/</i> D						
T25 VSS APES VSS APES VSS APES VSD APES VSD APES VDD APE									I			
T2A VID AP3A VID AP1A VID AP3A VID AP3									1			
127 P11RXLER I AB22 P91XCLK I AF16 P31XDR I AH29 P71RXDR I 1728 P111XEN O AB29 P97RXDR I AF16 P31RXDR I AH29 P71RXDR I 128 P11TXEN O AB20 P97RXDR I AF18 P41RXDR I AH20 P97RXDR I AH30 P81RXD2 O U03 DADR6 O AD23 DATA14 IO AF18 P41RXER IO AH30 P81XD2 O IO AH33 DYS IIO AH43 DYS DYS IO AH33 DYS IIO									'			
T32 P111 XCLK I AB32 PRXXLK I AF17 VDD I AH39 P78XD0R I T39 P118XCLK I AB39 P68XD0 I AF17 VDD AH39 P78XD0R I AH37 DVD AH37 DVD AH37 DVD AH37 DVD AH37 DVD AH37 DVD DA1725 I/O AH375 D			I			1						.,
T30 P1TRXCLK I A630 PRXDD I A618 P4RXDR I A401 D81XD2 O U01 D01426 I/O A001 D01414 I/O A271 VDO A001 D41A2 I/O U03 ADDR5 O A003 D41A13 I/O A221 VDO A003 VSS U04 ADDR13 O A003 VSS A223 VDO A005 P01XDR I/O A007 P01X			I.	AB 28		1			1			1
U01 DATA25 I/O ACCI DATA13 I/O AF19 VDD AU02 DATA2 I/O U03 DATA25 I/O AC02 DATA13 I/O AP20 PSRXDIR AI02 DATA15 I/O U04 ADDR6 O AC03 LED2 I/O AP21 PSRXDIR I AI06 PORXER I U05 VSS AC06 VSS AP24 PTXDIR I/O AI06 PORXER I U25 V10 AC05 VSD AF24 PTRXDIR I AI06 PORXER I U27 V10 AC02 PSTXDIR I AI07 PSRXDIR I AI09 PERXDIR I AI11 PZXDIR I/O U28 P111XDI O AC29 PSRXDV I AI11 PZXDIR I/O AI11 PZXDIR I/O AI11 PZXDIR I/O AI17 PZXDIR I/O AI17 I		P11T XEN				I					P7RXD3R	
U02 DATA/S LO AC22 DATA/S LO AF21 VDD AUG VDS U04 ADDR/B O AC03 LED2 LO AF21 VDD AUG VDS U06 VDD AC05 VDD AC05 VDD AUG PRXULK LO AUG PRXULK LO <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td></t<>									I			
U03 ADDR13 O AD2R4 CHA ADDR14 O AD33 VSS U06 VDD AD06 VDD AD06 VDD AD24 VDD AD14 PORXDRR I U05 VDS AD06 VDS AP24 VDD AD16 PORXDRR I U25 VSS AD26 VDD AP24 PTXDTR I AD16 PORXDRR I U28 VDD AD26 VDD AP26 PTXDTR I AD16 PORXDR I U28 PTITXDD O AC27 PFTXDTR I AF27 PBRXDL I A111 PTXDTR IO U30 PTITXDT O AC29 PFTXDTR I AF27 PBRXDL I A117 PTXDTR IO AD17 PTXDTR IO AD17 PTXDTR IO AD17 PTXDTR IO AD17 PTXDTR IO AD24 PTXDTR IO <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
U04 ADDR13 O AC04 LEDD I/O AP22 P6RXCIRR I/O A/06 P0RXERR I U06 VSS AC06 VSS AP23 VDD A/06 P0RXERR I U25 VSS AC26 VDD AC26 VDD A/27 P7RXERR I AJ07 PTIXEDR I/O U24 VTD AC26 P9TXD O AF23 PRXCLK I AJ07 PTIXEDR I/O U24 PTITXD O AC27 P9TXED O AF23 P8XCD I AJ17 P2XCLK I/O U29 PTITXDD O AC29 P9TXER I AF33 P8KXD0 I AJ117 P3XCLK I/O U10 DA1A24 I/O AD07 DA1A11 I/O AC32 P4RXLK I/O AJ18 P3XCNR I/O AJ18 P3XCNR I/O AJ17 P4XCNR I/O AJ17 P4XC									I			IO
U05 VD0 A/23 VD0 A/26 PREXER I U25 VSS A/26 VSS A/26 VD0 A/27 PTIXDIR O A/27 PFIXDIR I A/26 VD0 A/27 PFIXDIR I A/28 PFIXDIR <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
U06 VSS AC26 VSS AC26 VSS AC26 VSD AC26 VDD AD07 PTTXDRR LO U27 PTTXDD AC26 VSS AF26 VDD AD07 PTTXDRR LO U28 PTTXDD AC26 VDD AC27 PTXDRR LA AD07 PTTXDRR LO U28 PTTXDD AC28 P9TXD0 O AF28 PRXCLK I A110 P22CLR LO U39 PTTXDD O AC29 P9TXEN O AF28 P8RXD0 I A111 P2TXDRR LO U30 PTTXDD O AC30 P9RKER I A630 P8RXD0 I A112 P2RXDRR LO A103 P32RSR LO A111 P3TXDR LO A11			0			1.O			1.O			
U25 VSS A25 VPSS A425 VPSS PRXERR I A107 PITXEDR IO U28 VDD A265 VDD A265 VDD A108 PITXEDR O U28 PITXD O A239 PPTXD O A728 PBRXCL I A109 PITXEDR O U29 PITXD O A239 PPRXEN O A729 PBRXCL I A111 PZXDCR IO U30 PITXEN O A239 PPRXER I A530 DBTA6 IO A111 PZXDCR IO V03 DADRT O A033 LED1 IO AQ33 CPURC O A117 PATXENR O V05 VD0 AD05 VD0 AQ35 PRTXENR IO A117 PATXENR O IA23 IO A121 PATXENR IO IN17 PATXENR IO IN17 PATXENR IO <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>م.</td><td></td><td></td><td></td></t<>									م.			
U22 P11T X02 O AC27 PP1X00 O AF27 PP8CL I AJ09 P1RXDVR I U28 P11T X01 O AC29 PP1X N0 O AF29 P8RXDV I AJ11 P2XCR R IO U30 P11T X01 O AC29 PP7XEN O AF29 P8RXDV I AJ11 P2XCR R IO U30 P11T X01 O AC29 PP7XEN O AF27 P8RXEN IO AJ11 P2XCR R IO V02 DAT A31 IO AD02 DAT A11 IO AG23 CPURC O AJ15 P3TXENR IO V04 ADDR12 O AD06 VD0 AG35 P01RXD I AJ17 P4TXENR IO AJ17 P4TXENR IO AJ17 P4TXENR IO AJ17 P4TXENR IO AJ19 P4TXENR IO AJ19 P4TXENR IO AJ11 P4TXDR												١,D
U28 P111 XD1 O AC28 P97 XEN O AF28 P88K20, K I AJ10 P20X00R IO U30 P111 XD1 O AC30 P97 XEN I AF30 P88K20, K I AJ11 P27 XD2R IO V01 DAT A24 IO AD02 DAT A11 IO AG20 DAT A5 IO AJ14 P37 XD1R IO V33 ADDR7 O AD03 LED1 IO AG20 DAT A5 IO AJ16 P37 XD1R O V43 ADDR12 O AD04 LEDV.D0 IO AG26 P07 XD0R I AJ16 P37 XD1R IO V45 V10KXD I AD26 P87 XD0 AG26 P07 XD2R I AJ10 P47 XD3R IO AJ24 P40 XD3R IO AJ24 P40 XD3R IO AJ24 P40 XD4R IO AJ24 P40 XD4R IO AJ24 P40 XD4R IO AJ25											P 1T XE NR	0
U30 P11T XD1 O AC29 P9RXEN O AF29 P9RXDV I A111 P2TXDR IO U30 P11T XD0 O AC20 P9RXER I A530 P9RXD0 I A113 P3RXSR IO V02 DATA32 IIO ADDR O ADDR O ADDR O ADDR O ADDR O ADDR P3XENR O V04 ADDR12 O ADDR LEDN IO AC30 PUIRC O A115 P3TXENR O V05 VDD ADDS VDD IO AC35 PUIRC I A117 P4TXDR IO V25 PIORXD0 I AD25 P8TXD0 O AG37 PORXDR IO AJ23 P5CDR IO AJ23 P5CDR IO AJ21 P5TXDR IO AJ21 P5TXDR IO AJ21 P5TXDR IO AJ21 P5TXDR IO <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I.</td> <td></td> <td></td> <td></td>									I.			
U30 P1TT XD0 O AC30 P9RXDR I AF30 P9RXDR I AI12 P2RXCLRR IO V01 DAT A23 I/O AD02 DAT A11 I/O AC30 DAT A5 I/O AJ13 P3TXDR I/O V03 ADDR7 O AD03 LEDI I/O AG33 CPUIRQ O AJ16 P3TXDR I/O V04 ADDR12 O AD04 LEDVLD0 I/O AG33 CPUIRQ O AJ16 P3TXDR I/O V05 VDD AD06 VSS AD06 PSS AG26 P0TXDR I AJ18 P4TXENR O V25 P10RXD1 I AD26 P8TXD0 O AG20 P1TXD1R I AJ20 P5TXDR I/O AJ21 P5TXDR I/O V26 P10RXD3 I AD28 P9TXD2 I AG30 P1TXD1R I AJ22 P5TXDR I/O									1			
V01 DAT A24 LO ADD DAT A12 LO AC01 DAT A5 LO A113 P3CR5R LO V02 DAT A23 LO ADDR O ADDR D ADDR D <ddr< td=""> DDR DDR</ddr<>									1			
V02 DAT A33 LO AD02 DAT A11 LO AG23 DAT A5 LO AJ14 P31 XDR LO V03 ADDR12 O AD04 LEDVLD0 LO AG33 CPURQ O AJ15 P31 XDR CO V06 VVDD AD06 VDD AG35 PMCD AG35 PMCD AG36 PMCD AJ17 P31 XDR LO V06 VS5 AD06 VSD AG35 P01 XDDR L AJ18 P41 XDR LO V25 P108XD1 I AD26 P88XER I AG37 P01 XDL R LO AJ20 P50CL R LO V27 P108XD2 I AD28 P9CCL I AG31 P17 XDL R LO AJ21 P50CL R IO V29 P11CCL I AD30 P91 XD1 O AG14 P31 XDR LO AJ21 P50CL R IO V30 P11CCL I AD33 P91 XD1 O </td <td></td>												
V03 ADDR7 O AD03 LED1 I/O AG33 CPUIRQ O AJ16 P31XENR O V05 VDD AD06 VVD AG05 nPESET I AJ16 P38XD0R I V05 VDD AD06 VSS AD06 VSS AG05 P07XD0R IO AJ17 P41XD3R IO V25 P108XD0 I AD27 P87XD1 I AG09 P17XCLKR IO AJ21 P51XD1R IO V26 P108XD3 I AD27 P87XD1 I AG09 P11XCLKR IO AJ21 P51XD1R IO V29 P10RXD3 I AD26 P97XD1 O AG11 P21XDR I AJ22 P51XD1R IO AG12 P51XD1R IO AJ24 P60XDR IO V29 P11CAL I AJ26 P61XD1 IO AG13 P21XDR IO AG14 P11XDR IO <td></td>												
V04 ADDR12 O AD04 LEDVLD0 LO AC04 MDC O A117 P41X D3R I.O V06 VS5 AD06 VS5 AC06 P0TXDDR I.O A118 P41X D3R I.O V26 P10RXD0 I AD25 P81X D0 O AG06 P0TXDDR I.O A118 P41X D3R I.O V28 P10RXD2 I AD25 P81X D0 O AG36 P1TXCLKR I.O AJ21 P5C3 LR I.O V28 P10RXD2 I AD29 P90C0L I AG30 P1TXDLR I.O AJ21 P5C3 LR I.O V29 P11CCL I AD30 P91XD1 O AG12 P21XD2R I.O AJ22 P5KXDRR I.O V30 P11CCL I AD30 P91XD1 O AG14 P31XDR I.O AJ24 P6C0LR I.O V00 DAT421 IO AE60												
V06 VSS AC06 VSS AC06 P0T XDR IO A118 P4T XE NR O V26 P10RXD0 I AD26 PBRXER I AC07 P0RXDVR I A119 P4XDVR I V26 P10RXD1 I AD26 PBRXER I AC08 P1CRSR IO A120 P5CDLR IO V27 P10RXD3 I AD28 P9C0L I AC09 P1TXQLKR IO A122 P5RXDRR I V30 P11CQL I AD28 P9TXD2 O AG11 P2TXD2R IO A122 P5RXDRR IO V30 P11CQL IO AE01 DATA10 IO AG12 P2TXDR I A122 P6TXDRR IO A126 P6XDRR IO A126 P6XDRR IO A126 P6XDRR IO A126 P6XDRR IO A127 P7CSRR IO A100 P1XDRR IO												
V25 P10RXD0 I AD25 P8T XD0 O AG77 P0RXD7 I A119 P4RXD7R I V26 P10RXD1 I AD27 P8RXD1 I AG39 P11CRS R IO AJ21 P5CQL R IO V28 P10RXD3 I AD28 P9CQL I AG10 P1RXD1R I AJ22 P5RXER R I V29 P11CRS I AD29 P9TXD1 O AG11 P2TXD2R IO A212 P5RXER R IO V30 P11CCL I AD30 P9TXD1 O AG13 P2TXD2R IO AJ25 P6TXD0R IO V30 DATA22 IO AE01 DATA10 IO AG15 P3TXD2R IO AJ25 P6TXD0R IO V30 DATA22 IO AE04 LEDCL IO AG17 P3TXD1R IO AJ26 P6TXD0R IO V30 DATA22				AD05				nRESET		AJ17	P 4T X D3R	
V26 P10RXD1 I AD26 P8RXER I AC08 P1CRS LO AJ20 P5CCLR LO V27 P10RXD3 I AD28 P9CL I AG90 P1TXCL KR LO AJ21 P5TXER I V29 P11CRS I AD28 P9CL I AG30 P1TXCL KR LO AJ21 P5RXER I V30 P11CCL I AD30 P9TXD1 O AG31 P2TXCL KR LO AJ25 P6TXDR IO W01 DATA21 LO AE02 DATA9 LO AG31 P2TXCL KR LO AJ25 P6TXDR IO W03 ADDR8 O AE03 LEDVL D1 LO AG315 P3RXDR I AJ27 P7CRSR LO W06 VSS AE06 VSS AG31 P4TXDR LO AJ30 P7TXDR LO W06 VSS AE03 P5TXDR LO												
V27 P10RXD2 I AD27 P8RXD1 I AG09 P1TXCIR LO A211 P5TXD1R I A121 P5TXD1R I A121 P5TXD1R I A121 P5TXD1R I A122 P5TXD1R I A123 P5RXDVR I V39 P11CCL I AD39 P9TXD1 O AG11 P2TXD2R ID A123 P5RXDVR I V30 P11CCL I AD39 P9TXD1 O AG12 P2TXD1R ID AJ24 P6COLR ID V001 DATA21 ID AE01 DATA9 ID AG14 P3TXD1R ID AJ25 P6TXD0R ID V03 ADDR8 O AE03 LEDCLK ID AG16 P3RXD2R I AJ28 P7TXD0R ID ID AJ28 P7TXD0R ID AJ28 P7TXD0R ID AJ26 P4RXD2R I AJ30 P7RXD2R ID AK06												
V28 P10RXD3 I AD28 P40CL I ACI0 P1RXD1R I AL22 P5RXER I V39 P11CRS I AD30 P9TXD1 O AG11 P2TXD2R I/O AJ24 P6COLR I/O V01 DATA22 I/O AE01 DATA10 I/O AG13 P2TXD2R I AJ25 P6TXD0R I/O V03 ADDR8 O AE03 LEDVLD1 I/O AG14 P3TXD3R I/O AJ26 P6TXD0R I V03 ADDR8 O AE03 LEDVLD1 I/O AG16 P3RXD2R I AJ27 P7CRSR I/O V06 VDD AE06 VSS AG17 P4TXD1R I/O AZ02 P7TXD0R I/O V07 VDD AE06 VSS AG17 P4TXD1R I/O AX01 DATA0 I/O V07 VDD AE08 VSS AG21 P5CRSR <td< td=""><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			I									
V29 P11CQL I AD29 P9T XD1 O AG11 P2T XQL KR I.O AJ23 P5RXDVR I. V30 P11CQL I AB30 P9T XD1 O AG12 P2T XQL KR I.O AJ24 P6OLR I.O W01 DAT A21 I.O AE01 DAT A9 I.O AG14 P3T XD3R I.O AJ26 P6R XD0R I.O W03 ADDR8 O AE03 LEDVLD I.O AG14 P3T XD3R I.O AJ26 P6R XD0R I.O W04 ADDR8 O AE06 VSS AG16 P3R XD2R I AJ28 P7T XD0R I.O W05 VDD AE06 VSS AG19 P5R XD0R I AJ30 P7R XD2R I.O W25 VSS AE07 P10T XD2R I.O AG21 P5R XD0R I AK03 P0C XL R I.O W26 VDD AE08 VSS AG23 <			1									
V30 P11CQL I AD30 P91XD1 O Aci12 P21XQLRR I/O AL24 P6CQLR I/O W01 DATA22 I/O AE01 DATA9 I/O AG13 P21XD2R I AJ25 P61XD0R I W03 ADDR8 O AE03 LEDVLD1 I/O AG15 P31XD2R I AJ25 P61XD0R I W03 ADDR8 O AE03 LEDVLD1 I/O AG15 P31XD1R I/O AJ25 P77XDVR I/O W06 VDD AE05 VSS I AG17 P41XD1R I/O AJ20 P77XD2R I W26 VSS AE07 P01XD2R I/O AG17 P57XD0R I A/30 P70XD2R I/O W27 P10XQLK I AE09 P1CQLR I/O AG21 P57XD0R I/O AK04 P0TXD1R I/O W28 P10RXCLK I AE11			I									
W01 DATA22 LO AE01 DATA10 LO AG13 PERXD2R I AJ25 P67XD0R LO W02 DATA21 LO AE02 DATA9 LO AG15 P37XD3R LO AJ27 P7CRSR LO W03 ADDR8 O AE03 LEDVLD1 LO AG15 P37XERR I AJ27 P7CRSR LO W04 ADDR8 O AE04 LEDVLD1 LO AG16 P37XD2R I AJ29 P7XD0R IO W06 VSS AE06 VSS AG18 P47XD1R IO AL29 P7XD0R IO W25 VSS AE07 P10TXD2R LO AG20 P5TXENR O AK01 DATA0 LO W26 VDD AE08 VSS AG20 P5TXENR O AK03 P0CXLR LO W27 P10TXCLK L AE10 VSS AG20 P6TXDRR L			Ì									
W03 ADDR8 O AE03 LEDVLD1 I/O AG15 P3RXERR I AJ27 P7CRSR I/O W04 ADDR11 O AE05 VSS I AG16 P3RXD2R I AJ28 P7TXD0R I/O W05 VDD AE05 VSS I AG17 P4TXD1R I/O AJ29 P7RXD0R I W25 VSS AE07 P0TXD2R I/O AG18 P4RXERR I AJ30 P7RXD0R I W25 VSS AE07 P0TXD2R I/O AG19 P5RXDR I AK03 P0CALR I/O W26 VDD AE10 VSS AG21 P5RXDR I AK03 P0CALR I/O W27 P10RXCLK I AE11 P1RXD2R I AG23 P6RXDR I AK05 P0RXDLR I/O W30 P10RXDV I AE12 VSS AG24 P6RXDR I	W01	DAT A22	١/D	AE 01	DAT A10	U/I	AG13	P2RXD2R	I.	AJ25	P 6T X DOR	
W04 ADDR11 O AE 04 LE DCL K I/O AG16 P PRX D2R I AJ28 PT X DDR I/O W05 VDD AE 06 VSS I AG17 P 4T X D1R I/O AJ29 P 7R X D0R I W05 VDS AE 06 VSS AG18 P 4R X ER I AJ30 P 7R X D0R I W25 VSS AE 07 P 0T X D2R I/O AG19 P 5G X SN I/O AK01 DAT A0 I/O W26 VSS AE 08 VSS AG20 P 5T X EN R O AK03 P 00C L R I/O W28 P 10R X CLK I AE 10 VSS AG22 P 6T X D2R I/O AK04 P 0T X D1R I/O W30 P 10R X DV I AE 11 P 17 X D2R I AG23 P 6R X D3R I AK06 P 0R X D2R I Y01 DAT A20 I/O AE 14 Y SS AG24 P 77 X D1									٨.I			
W05 VDD AE05 VSS I AG17 P4T XD1R I/O AJ29 P7RXDVR I W06 VSS AE06 VSS AG18 P4RXERR I AJ30 P7RXD2R I W25 VSS AE07 P0TXD2R I/O AG19 P5RXER I/O AK01 DA1A0 I/O W26 VDD AE08 VSS AG20 P5T XENR O AK02 CLK50 I W27 P10TXCLK I AE10 VSS AG22 P6T XD2R I/O AK04 P0TXD1R I/O W29 P10RXCLK I AE11 P1RXD2R I AG23 P6RXERR I AK05 P0RXD2R I Y01 DAT A20 I/O AE13 P2RXD0R I AG24 P6RXDR I/O AK07 P1TXD1R I/O Y02 DAT A19 I/O AE14 VSS AG267 P7TXD1R I AK09 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
W06 VSS AE06 VSS AG18 P4RXERR I AJ30 P7RXD2R I W25 VSS AE07 P0TXD2R I/O AG19 P5CRSR I/O AK01 DATA0 I/O W26 VDD AE08 VSS AG20 P5TKER O AK01 DATA0 I/O W27 P10TXCLK I AE09 P1CCR I/O AG21 P5RXD0R I AK03 P0C0LR I/O W28 P10RXCLK I AE11 P1RXD2R I AG23 P6RXD2R I AK04 P0TXD1R I/O W30 P10RXDV I AE12 VSS AG24 P7TXD2R I/O AK07 P1TXD1R I/O AK07 P1TXD0R I/O AK10 P2TXD3R I/O AK07 P1TXD0R I/O A			0									
W25 VSS AE07 P0T XD2R I/O AG19 P5CRSR I/O AK01 DAT A0 I/O W26 VDD AE08 VSS AG20 P5T XENR O AK02 CLK50 I W27 P10T XCLK I AE09 P10CLR I/O AG21 P5T XENDR O AK03 PCOCLR I/O W28 P107XCLK I AE10 VSS AG22 P6T XD2R I/O AK04 P0T XD1R I/O W39 P107XDV I AE13 P2RXD0R I AG24 P6RXD3R I AK06 P0RXD2R I Y01 DAT A30 I/O AE14 VSS AG27 P7T XD2R I/O AK06 P10RXDR I Y01 DAT A30 I/O AE14 VSS AG27 P7T XD2R I/O AK09 P11 XD1R I/O Y04 ADDR10 O AE16 P4CRSR I/O AC30 P8T						I						
W26 VDD AE08 VSS AG20 P5T XENR O AK02 CLK50 I W27 P101 XCLK I AE09 P10CQLR I/O AG22 P6T XDR I AK03 P0CQLR I/O W28 P107XCLK I AE11 P1RXDZR I AG22 P6T XDZR I/O AK03 P0CXLK I/O W29 P107XCLK I AE11 P1RXDZR I AG22 P6T XDZR I AK05 P0RXLKR I/O W30 P107XDV I AE12 VSS AG26 P7T XDZR I/O AK06 P0RXDZR I Y01 DAT A20 I/O AE14 VSS AG26 P7T XDLR I/O AK08 P1RXERR I Y03 ADDR9 O AE17 VSS AG27 P7RXD1R I AK09 P1RXDR I/O Y05 VDD AE17 VSS AG29 P8T XD1 O												
W27 P10T XCL K I AE09 P1CCL R I/O AG21 P5RXDOR I AK03 P0COL R I/O W28 P10RXE R I AE10 VSS AG23 P6RXER I AK04 P0TXDIR I/O W29 P10RXCU K I AE11 P1RXDDR I AG23 P6RXER I AK05 P0RXLK I/O W30 P10RXDV I AE12 VSS AG24 P6RXDR I AK06 P0RXDL K I/O Y01 DAT A20 I/O AE13 P2RXD0R I AG26 P7T XDL R I/O AK07 P1T XDIR I/O Y02 DATA19 I/O AE14 VSS AG26 P7T XDL R I/O AK07 P1T XDDR I AK09 P1RXDOR I DR AK01 P2T XD3R I/O AK11 P2T XD3R I/O AK11 P2T XD3R I/O AK11 P2T XD3R I/O AK11 P2T XD3						1/0						
W28 P10RXER I AE10 VSS AG22 P61 XD2R I/O AK04 P01 XD1R I/O W29 P10RXCLK I AE11 P1RXD2R I AG23 P6RXERR I AK05 P0RXCLKR I/O W30 P10RXDV I AE11 P1RXD2R I AG23 P6RXERR I AK05 P0RXCLKR I/O Y01 DATA20 I/O AE13 P2RXD0R I AG25 P7TXD2R I/O AK07 P1TXD1R I/O Y02 DATA19 I/O AE14 VSS AG26 P7TXD1R I AK08 P1RXERR I/O Y04 ADDR10 O AE16 P4CRSR I/O AG29 P8TXD1 O AK11 P2TXD3R I/O Y05 VDD AE19 VSS AG30 P8TXEN O AK13 P3COLR I/O Y26 P9RXD3 I AE20 P5RXD2R I			I			I/O						I/O
W30 P10RXDV I AE12 VSS AG24 P6RXD3R I AK06 P0RXD2R I Y01 DAT A20 I/O AE13 P2RXD0R I AG25 P7T XD2R I/O AK07 P1T XD1R I/O Y02 DAT A19 I/O AE14 VSS AG26 P7T XCL KR I/O AK08 P1T XD1R I Y03 ADDR9 O AE16 P4CRS R I/O AG28 P8CRS I AK09 P1T XD1R I Y04 ADDR10 O AE16 P4CRS R I/O AG29 P8T XD1 O AK11 P2T XD3R I/O Y05 VDD AE18 P4RXD3R I AG30 P8T XEN O AK12 P2RXDVR I Y25 P9RXD2 I AE19 VSS AH01 DAT A4 I/O AK13 P3COLR I/O Y27 P10T XD2 O AE21 VSS AH03	W28	P10RXER	I	AE 10	VS S		AG22	P6T X D2R	٨.	AK 04	POT XD1R	U/O
Y01 DAT A20 I/O AE 13 P2RXDOR I AG25 P7T XD2R I/O AK07 P1T XD1R I/O Y02 DAT A19 I/O AE 14 VSS AG26 P7T XD2R I/O AK08 P1RXDRR I Y03 ADDR9 O AE 16 P4CRSR I/O AG27 P7RXD1R I AK09 P1RXDR I Y04 ADDR10 O AE 16 P4CRSR I/O AG28 P8CRS I AK10 P2T XD3R I/O Y05 VDD AE 18 P4RXD3R I AG30 P8T XEN O AK11 P2T XDNR I/O Y25 P9RXD2 I AE 20 P5RXD2R I AH02 DAT A3 I/O AK14 P3T XD0R I/O Y26 P9RXD3 I AE 20 P5RXD2R I AH02 DAT A3 I/O AK14 P3T XD0R I/O Y28 P10T XD1 O A						1						
Y02 DAT A19 I/O AE 14 VSS AG26 PTT XCL KR I/O AK08 P1RXERR I Y03 ADDR9 O AE 15 VSS AG27 P7RXD1R I AK09 P1RXDDR I Y04 ADDR10 O AE 16 P4CRS R I/O AG28 P8CRS I AK10 P2T XD3R I/O Y05 VDD AE 17 VSS AG29 P8T XD1 O AK11 P2T XD3R I/O Y06 VSS AE 18 P4RXD3R I AG30 P8T XEN O AK12 P2RXDVR I Y25 P9RXD3 I AE 20 P5RXD2R I AH01 DAT A4 I/O AK13 P3COLR I/O Y26 P9RXD3 I AE 20 P5RXD2R I AH02 DAT A3 I/O AK14 P3T XD0R I/O Y27 P10T XD0 O AE 23 VSS AH03 MDIO I/O AK15 P3RXDLKR I/O Y30 P10T XD0 O												
Y03 ADDR9 O AE 15 VSS AG27 P7RXD1R I AK09 P1RXD0R I Y04 ADDR10 O AE16 P4CRSR I/O AG28 P8CRS I AK10 P2T XD3R I/O Y05 VDD AE17 VSS AG29 P8T XD1 O AK11 P2T XD3R I/O Y06 VSS AE18 P4RXD3R I AG39 P8T XEN O AK12 P2RXDVR I Y26 P9RXD3 I AE20 P5RXD2R I AH02 DAT A3 I/O AK14 P3T XD0R I/O Y27 P10T XD2 O AE21 VSS AH03 MDIO I/O AK15 P3RXCL KR I/O Y28 P10T XD1 O AE23 VSS AH05 P0T XCL KR I/O AK16 P3RXDVR I Y29 P10T XD0 O AE24 VSS AH06 P0RXD3R I AK18 P4T XD0R I/O AA02 DAT A17 I/O AE26						I						
Y04 ADDR 10 O AE 16 P4CRS R I/O AG28 P8CRS I AK10 P2T XD3R I/O Y05 VDD AE 17 VSS AG29 P8T XD1 O AK11 P2T XD3R I/O Y06 VSS AE 18 P4RXD3R I AG30 P8T XEN O AK12 P2RXDVR I Y25 P9RXD2 I AE 19 VSS AH01 DAT A4 I/O AK14 P3T XD0R I/O Y26 P9RXD3 I AE 20 P5RXD2R I AH02 DAT A3 I/O AK14 P3T XD0R I/O Y27 P10T XD1 O AE 22 P6RXDVR I AH04 WCHDCG O AK16 P3RXDVR I Y29 P10T XD1 O AE 23 VSS AH05 P0T XCLK I/O AK17 P4COL R I/O Y30 P10T XEN O AE 24 VSS AH05 P0T XDR												
Y05 VDD AE 17 VSS AG29 P8T XD1 O AK11 P2T XENR O Y06 VSS AE 18 P4RXD3R I AG30 P8T XEN O AK12 P2RXDVR I Y25 P9RXD2 I AE 19 VSS AH01 DAT A4 I/O AK13 P3COLR I/O Y26 P9RXD3 I AE 20 P5RXD2R I AH02 DAT A3 I/O AK14 P3T XD0R I/O Y27 P10T XD2 O AE 21 VSS AH03 MDIO I/O AK16 P3RXD/R I Y29 P10T XD0 O AE 23 VSS AH05 P0T XCL KR I/O AK17 P4COLR I/O Y30 P10T XEN O AE 25 VSS AH06 P0RXD3R I AK18 P4T XD0R I/O AA01 DAT A18 I/O AE 25 VSS AH06 P0RXD1R I AK19 P4RXCL KR I/O AA03 VDD AE 27 P8T XCL K I </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>I/O</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						I/O						
Y06 VSS AE 18 P4RXD3R I AG30 P8T XE N O AK 12 P2RXDVR I Y25 P9RXD2 I AE 19 VSS AH01 DAT A4 I/O AK 13 P3COLR I/O Y26 P9RXD3 I AE 20 P5RXD2R I AH02 DAT A3 I/O AK 14 P3T XDOR I/O Y27 P10T XD2 O AE 21 VSS AH03 MDIO I/O AK 15 P3T XDOR I/O Y28 P10T XD1 O AE 22 P6RXDVR I AH04 WCHDOG O AK 17 P4COLR I/O Y29 P10T XD0 O AE 24 VSS AH06 P0RXD3R I AK 18 P4T XD0R I/O Y30 P10T XE N O AE 25 VSS AH06 P0RXD3R I AK 18 P4T XD0R I/O AA01 DAT A18 I/O AE 25 VSS AH07 P0RXD3R I AK 19 P4RXCLKR I/O AA03 VDD <t< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>			0						-			
Y26P9RXD3IAE20P5RXD2RIAH02DAT A3I/OAK14P3T XDORI/OY27P10T XD2OAE21VSSAH03MDIOI/OAK15P3RXCLKRI/OY28P10T XD1OAE22P6RXDVRIAH04WCHDOGOAK16P3RXDVRIY29P10T XD0OAE23VSSAH05P0T XCLKRI/OAK17P4CQLRI/OY30P10T XENOAE24VSSAH06P0RXD0RIAK18P4T XD0RI/OAA01DAT A18I/OAE25VSSAH06P0RXD3RIAK18P4T XCLKRI/OAA02DAT A17I/OAE26P8T XD3OAH08P1T XD0RI/OAK20P4RXDLRIAA03VDDAE27P8T XCLKIAH09P1RXCLKRI/OAK21P5T XD2RI/OAA04VSSAE28P8RXD2IAH10P2CRS RI/OAK22P5T XD0RI/OAA04VSSAE29P8RXD3IAH11P2T XD1RI/OAK23P5RXCLKRI/OAA05VDDAE29P8RXD3IAH12P2RXERRIAK24P6CRS RI/OAA06VSSAF01DAT A8I/OAH13P2RXD3RIAK24P6CRS RI/OAA25VSSAF01DAT A8I/OAH13P2RXERRIAK26P6T XE NR <td< td=""><td>Y06</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>0</td><td></td><td></td><td>1</td></td<>	Y06					1			0			1
Y27P10T XD2OAE21VSSAH03MDIOI/OAK15P3RXCLKRI/OY28P10T XD1OAE22P6RXDVRIAH04WCHDOGOAK16P3RXDVRIY29P10T XD0OAE23VSSAH05P0T XCLKRI/OAK17P4COLRI/OY30P10T XENOAE24VSSAH06P0RXD0RIAK18P4T XD0RI/OAA01DAT A18I/OAE25VSSAH07P0RXD3RIAK19P4RXCLKRI/OAA02DAT A17I/OAE26P8T XD3OAH08P1T XD0RI/OAK20P4RXD1RIAA03VDDAE27P8T XCLKIAH09P1RXCLKRI/OAK21P5T XD2RI/OAA04VSSAE28P8RXD2IAH10P2CRSRI/OAK22P5T XD0RI/OAA05VDDAE29P8RXD3IAH11P2T XD1RI/OAK22P5T XD0RI/OAA06VSSAE30P9CRSIAH12P2RXERRIAK24P6CRSRI/OAA25VSSAF01DAT A8I/OAH13P2RXD3RIAK25P6T XD3RI/OAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XENROAA27P9RXD1IAF03CPUDII/OAH13P2RXD3RIAK26P6T XENRO<	Y 25	P9RXD2	I.	AE 19	VS S		AH01	DAT A4	٨.	AK 13	P3COLR	U/D
Y28P10T XD1OAE22P6RXDVRIAH04WCHDOGOAK16P3RXDVRIY29P10T XD0OAE23VSSAH05P0T XCL KRI/OAK17P4COL RI/OY30P10T XENOAE24VSSAH06P0RXD0RIAK18P4T XD0RI/OAA01DAT A18I/OAE25VSSAH07P0RXD3RIAK19P4RXCL KRI/OAA02DAT A17I/OAE26P8T XD3OAH08P1T XD0RI/OAK20P4RXD1RIAA03VDDAE27P8T XCL KIAH09P1RXCL KRI/OAK21P5T XD2RI/OAA04VSSAE28P8RXD2IAH10P2CRSRI/OAK22P5T XD0RI/OAA05VDDAE29P8RXD3IAH11P2T XD1RI/OAK22P5T XD0RI/OAA06VSSAE30P9CRSIAH12P2RXERRIAK24P6CRSRI/OAA25VSSAF01DAT A8I/OAH13P2RXD3RIAK25P6T XD3RI/OAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XENROAA27P9RXD1IAF03CPUDII/OAH15P3T XCL KRI/OAK26P6T XENROAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XE						I						
Y29P10T XD0OAE23VSSAH05P0T XCL KRI/OAK17P4COL RI/OY30P10T XE NOAE24VSSAH06P0R XD0RIAK18P4T XD0RI/OAA01DAT A18I/OAE25VSSAH07P0R XD3RIAK19P4R XCL KRI/OAA02DAT A17I/OAE26P8T XD3OAH08P1T XD0RI/OAK20P4R XD1RIAA03VDDAE27P8T XCL KIAH09P1R XCL KRI/OAK21P5T XD2RI/OAA04VSSAE28P8R XD2IAH10P2CRS RI/OAK22P5T XD0RI/OAA05VDDAE29P8R XD3IAH11P2T XD1RI/OAK23P5R XCL KRI/OAA06VSSAE 30P9CRSIAH11P2T XD1RI/OAK24P6CR SRI/OAA25VSSAF01DAT A8I/OAH13P2R XD3RIAK25P6T XD3RI/OAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XE NROAA27P9R XD1IAF03CPUDIIAH15P3T XCL KRI/OAK27P6R XD1RIAA26VDDIAF03CPUDI/OAH16P3R XD1RIAK28P7COL RI/OAA28P10CRSIAF04CPUDOI/OAH16P3R XD1RI </td <td></td>												
Y30P10T XENOAE24VSSAH06P0RXD0RIAK18P4T XDORIOAA01DAT A18I/OAE25VSSAH07P0RXD3RIAK19P4RXCLKRI/OAA02DAT A17I/OAE26P8T XD3OAH08P1T XDORI/OAK20P4RXD1RIAA03VDDAE27P8T XCLKIAH09P1RXCLKRI/OAK21P5T XD2RI/OAA04VSSAE28P8RXD2IAH10P2CRSRI/OAK22P5T XD0RI/OAA05VDDAE29P8RXD3IAH11P2T XD1RI/OAK23P5RXCLKRI/OAA06VSSAE30P9CRSIAH12P2RXERRIAK24P6CRSRI/OAA25VDDAF01DAT A8I/OAH13P2RXD3RIAK26P6T XENROAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XENROAA27P9RXD1IAF03CPUDIIAH15P3T XCLKRI/OAK27P6RXD1RIAA28P10CRSIAF04CPUDOI/OAH16P3RXD1RIAK28P7COLRI/OAA29P10COLIAF05VDDAH17P4T XD2RI/OAK29P7T XENRO						I						
AA01DAT A18I/OAE 25VS SAH07PORXD3RIAK19P4RXCLKRI/OAA02DAT A17I/OAE 26P8T XD3OAH08P1T XDORI/OAK20P4RXD1RIAA03VDDAE 27P8T XCL KIAH09P1RXCLKRI/OAK21P5T XD2RI/OAA04VS SAE 28P8RXD2IAH10P2CRS RI/OAK22P5T XD0RI/OAA05VDDAE 29P8RXD3IAH11P2T XD1RI/OAK23P5RXCLKRI/OAA06VS SAE 30P9CRSIAH12P2RXE RRIAK24P6CRS RI/OAA25VS SAF01DAT A8I/OAH13P2RXD3RIAK25P6T XD3RI/OAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XE NROAA27P9RXD1IAF03CPUDIIAH15P3T XCLKRI/OAK27P6RXD1RIAA28P10CRSIAF04CPUDOI/OAH16P3RXD1RIAK28P7COLRI/OAA29P10COLIAF05VDDAH17P4T XD2RI/OAK29P7T XE NRO												
AA02DAT A17I/OAE 26P8T XD3OAH08P1T XD0RI/OAK20P4RXD1RIAA03VDDAE 27P8T XCL KIAH09P1RXCL KRI/OAK21P5T XD2RI/OAA04VSSAE 28P8RXD2IAH10P2CRS RI/OAK22P5T XD0RI/OAA05VDDAE 29P8RXD3IAH11P2T XD1RI/OAK23P5RXCL KRI/OAA06VSSAE 30P9CRSIAH12P2RXERRIAK24P6CRS RI/OAA25VSSAF01DAT A8I/OAH13P2RXD3RIAK25P6T XD3RI/OAA26VDDAF02DAT A7I/OAH14P3T XD2RI/OAK26P6T XENROAA27P9RXD1IAF03CPUDIIAH15P3T XCL KRI/OAK27P6RXD1RIAA28P10CRSIAF04CPUDOI/OAH16P3RXD1RIAK28P7COL RI/OAA29P10COLIAF05VDDAH17P4T XD2RI/OAK29P7T XE NRO												
AA03 VDD AE 27 P8T XCL K I AH09 P1RXCL KR I/O AK21 P5T XD2R I/O AA04 VSS AE 28 P8RXD2 I AH10 P2CRS R I/O AK22 P5T XD0R I/O AA05 VDD AE 29 P8RXD3 I AH11 P2T XD1R I/O AK23 P5RXCL KR I/O AA06 VSS AE 30 P9CRS I AH11 P2T XD1R I/O AK24 P6CRS R I/O AA25 VSS AE 30 P9CRS I AH12 P2RXD3R I AK24 P6CRS R I/O AA25 VSS AF01 DAT A8 I/O AH13 P2RXD3R I AK25 P6T XD3R I/O AA26 VDD AF02 DAT A7 I/O AH14 P3T XD2R I/O AK26 P6T XE NR O AA27 P9RXD1 I AF03 CPUD I/O AH16 P3T XD1R						0						
AA05 VDD AE 29 P8RXD3 I AH11 P2T XD1R I/O AK23 P5RXCLKR I/O AA06 VSS AE 30 P9CRS I AH12 P2RXERR I AK24 P6CRS R I/O AA25 VSS AF01 DAT A8 I/O AH13 P2RXD3R I AK25 P6T XD3R I/O AA26 VDD AF02 DAT A7 I/O AH14 P3T XD2R I/O AK26 P6T XE NR O AA27 P9RXD1 I AF03 CPUDI I AH15 P3T XCLKR I/O AK27 P6RXD1R I AA28 P10CRS I AF04 CPUDO I/O AH16 P3RXD1R I AK28 P7COLR I/O AA29 P10COL I AF05 VDD AH17 P4T XD2R I/O AK29 P7T XE NR O				AE 27								
AA06 VSS AE 30 P9CRS I AH12 P2RXERR I AK24 P6CRSR I/O AA25 VSS AF01 DAT A8 I/O AH13 P2RXD3R I AK25 P6T XD3R I/O AA26 VDD AF02 DAT A7 I/O AH14 P3T XD2R I/O AK26 P6T XE NR O AA27 P9RXD1 I AF03 CPUDI I AH15 P3T XCL KR I/O AK27 P6RXD1R I AA28 P10CRS I AF04 CPUDO I/O AH16 P3RXD1R I AK28 P7COLR I/O AA29 P10COL I AF05 VDD AH17 P4T XD2R I/O AK29 P7T XE NR O												
AA25 VS S AF01 DAT A8 I/O AH13 P2RXD3R I AK25 P6T XD3R I/O AA26 VDD AF02 DAT A7 I/O AH14 P3T XD2R I/O AK26 P6T XE NR O AA27 P9RXD1 I AF03 CPUDI I AH15 P3T XCL KR I/O AK27 P6RXD1R I AA28 P10CRS I AF04 CPUDO I/O AH16 P3RXD1R I AK28 P7COLR I/O AA29 P10COL I AF05 VDD AH17 P4T XD2R I/O AK29 P7T XE NR O												
AA26 VDD AF02 DAT A7 I/O AH14 P3T XD2R I/O AK26 P6T XE NR O AA27 P9RXD1 I AF03 CPUDI I AH15 P3T XCL KR I/O AK27 P6RXD1R I AA28 P10CRS I AF04 CPUDO I/O AH16 P3RXD1R I AK28 P7COLR I/O AA29 P10COL I AF05 VDD AH17 P4T XD2R I/O AK29 P7T XE NR O												
AA27 P9RXD1 I AF03 CPUDI I AH15 P3T XCL KR I/O AK27 P6RXD1R I AA28 P10CRS I AF04 CPUDO I/O AH16 P3RXD1R I AK28 P7COLR I/O AA29 P10COL I AF05 VDD AH17 P4T XD2R I/O AK29 P7T XE NR O												
AA28 P10CRS I AF04 CPUDO I/O AH16 P3RXD1R I AK28 P7COLR I/O AA29 P10COL I AF05 VDD AH17 P4T XD2R I/O AK29 P7T XE NR O			I									
AA29 P10COL I AF05 VDD AH17 P4TXD2R I/O AK29 P7TXENR O												
	AA30	P10TXD3	0	AF 06	P0CRS R	U/I	AH18	P4TXCLKR	٨.	AK 30	P7RXCLKR	٨.I

Pin List By Location: Part 2

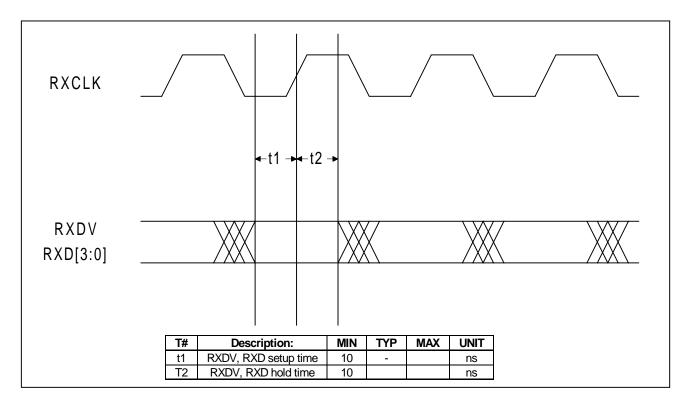
INTRODUCTORY

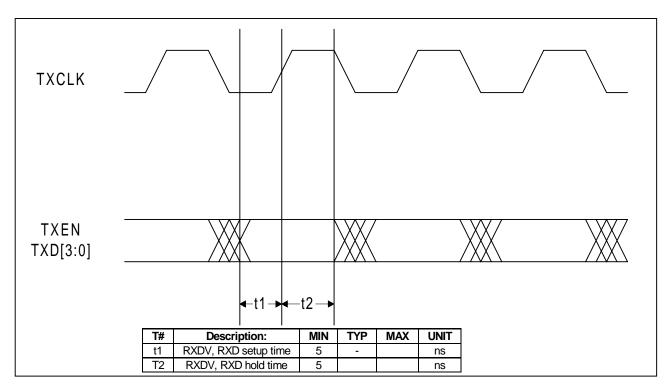

Pin List	By Na	ame	(With	Voltage F	Ratin	g): F	Part 1								
Signal	Pin		Туре	Signal	Pin	٧O	Туре	Signal	Pin	vo	Туре	Signal	Pin	vo	Туре
Name			Type	Name	• •••			Name				Name			Type
ADDR0 ADDR01	H03 J03	3.3V 3.3V	0	DAT A41 DAT A43	J02 H02	3.3V 3.3V	0,1 0,1	P03CRS R P03RX D0R	AJ13 AJ16	3.3V 3.3V		P07T X D3R P08COL	AH26 AF 27	3.3V 3.3V	I/O I
ADDR02	K03	3.3V	0	DAT A44	H01	3.3V	I/O	P03RXD1R	AH16		İ	POSCRS	AG28		i
ADDR03	L03	3.3V	0	DAT A45	G02	3.3V	۱/D	P03RXD2R	AG16			P08RXCLK		3.3V	1
ADDR04 ADDR05	R03 T 03	3.3V 3.3V	0	DAT A46 DAT A47	G01 F02	3.3V 3.3V	I/O I/O	P03RXD3R P03RXDVR	AF 16 AK 16			P08RXD0 P08RXD1	AF 30 AD27		1
ADDR06	U03	3.3V	0	DAT A48	F01	3.3V	U/D	P03RXERR			I	P08RXD2	AE 28		I.
ADDR07 ADDR08	V03 W03	3.3V 3.3V	0	DAT A49 DAT A50	E 02 E 01	3.3V 3.3V		P03T X CL K R P03T X D0R	AH15 AK14	3.3V	al Al	P08RXD3 P08RXDV	AE 29 AF 29	3.3V 3.3V	1
ADDR09	Y03	3.3V 3.3V	0	DAT A50 DAT A51	D02	3.3V 3.3V	I/O	P03T X D0R	AU14	3.3V 3.3V	I/O	POSRXER	AD26		i i
ADDR10	Y04	3.3V	0	LE DO		3.3V	I/D	P03T X D2R	AH14		I/O	PO8T XCLK			
ADDR11 ADDR12	W04 V04	3.3V 3.3V	0	LED1 LED2	AD03 AC03	3.3V 3.3V	0,1 1/0	P03T X D3R P03T XE NR	AG14 AJ15	3.3V 3.3V	QI O	P08T XD0 P08T XD1	AD25 AG29	3.3V 3.3V	0 0
ADDR13	U04	3.3V	Õ	LE D3	AB04	3.3V	I/O	P04COLR	AK 17		۵.	P08T XD2	AH30		Õ
ADDR14	T 04	3.3V	0		AE 04	3.3V	I/O	PO4CRS R	AE 16		۵۱ ما	PO8T XD3	AE 26		0
ADDR15 ADDR16	N04 M04	3.3V 3.3V	0	LE DVL D0 LE DVL D1	AD04 AE 03	3.3V 3.3V	0,1 1/0	P04RXCLKR P04RXD0R	AK 19 AH 19	3.3V 3.3V	I/O I	P08T XE N P09COL	AG30 AD28		0
ARLCLK	F 04	3.3V	0	MDC	AG04	3.3V	0	P04RXD1R	AK 20	3.3V	I	P09CRS	AE 30	3.3V	I
ARL DIO ARL DI1	D03 E 04	3.3V 3.3V		MDIO nCS 0	AH03 M03	3.3V 3.3V	0/I 0	P04RXD2R P04RXD3R	AF 18 AE 18	3.3V 3.3V		P09RXCLK P09RXD0	AB 28 AB 30		
ARL DIT ARL DI2	E 04 E 03	3.3V 3.3V	1	nCS1	J04	3.3V 3.3V	0	P04RXD3R P04RXDVR	AL 18 AJ 19	3.3V 3.3V		P09RXD0 P09RXD1	AB 30 AA27		1
ARL DI3	F03	3.3V	I	nCS 2	L04	3.3V	0	P04RXERR	AG18	3.3V	I	P09RXD2	Y 25	3.3V	I.
ARL DIR0 ARL DIR1	G03 G04	3.3V 3.3V	0	nCS 3 nOE	K04 R04	3.3V 3.3V		P04T X CL K R P04T X D0R	AH18 AK 18	3.3V 3.3V	al Al	P09RXD3 P09RXDV	Y 26 AB 29	3.3V 3.3V	1
AREDIN	H04	3.3V 3.3V	I	nRESET	AG05	3.3V 3.3V	I	P04T X D0R	AG17		I/O	P09RXER	AC30		i
ARLSYNC	F 05	3.3V	0	nWE	P03	3.3V	0	P04T X D2R	AH17		1/O	P09T XCLK	AB 27		I
CLK50 CPUDI	AK02 AF03	3.3V 3.3V		P00COLR P00CRSR	AK 03 AF 06	3.3V 3.3V	0,1 1/0	P04T X D3R P04T XE NR	AJ17 AJ18	3.3V 3.3V	QI O	P09T XD0 P09T XD1	AC28 AD30		0 0
CPUDO	AF 03		۱,D	POORXCLKR		3.3V	I/O	P05COLR		3.3V	0 QI	P09T XD2	AD30 AD29		0
CPUIRQ	AG03		0	POORXDOR	AH06	3.3V	1	P05CRS R	AG19	3.3V	I/O	P09T XD3	AC27		0
DAT A0 DAT A01	AK 01 AJ 02	3.3V 3.3V	al Al	POORXD1R POORXD2R	AJ06 AK06	3.3V 3.3V		P05RXCLKR P05RXD0R	AK 23 AG21	3.3V 3.3V	I/O I	P09T XE N P10COL	AC29 AA29	3.3V 3.3V	0
DAT A02		3.3V	I/O	P00RXD3R	AH07		İ	P05RXD1R			i	P10CRS	AA28		i
DAT A03		3.3V	۵.	POORXDVR	AG07	3.3V	I	P05RXD2R	AE 20	3.3V		P10RXCLK	W29	3.3V	1
DAT A04 DAT A05	AG02	3.3V 3.3V	al Al	POORXERR POOT XCLKR	AJ05 AH05	3.3V 3.3V	l I/O	P05RXD3R P05RXDVR	AH22 AJ23	3.3V 3.3V		P10RXD0 P10RXD1	V25 V26	3.3V 3.3V	1
DAT A06	AG01	3.3V	0,I	POOT X DOR	AG06	3.3V	١ <i>/</i> D	P05RXERR	AJ22	3.3V	I	P10RXD2	V27	3.3V	I
DAT A07 DAT A08	AF 02	3.3V 3.3V	al Al	POOT XD1R POOT XD2R	AK04 AE07	3.3V	0,1 0,1	P05T X CL K R P05T X D0R	AH21 AK 22	3.3V	al Al	P10RXD3 P10RXDV	V28 W30	3.3V 3.3V	1
DAT A00 DAT A09	AE 02		I/O	POOT X D2R	AL 07 AJ 04	3.3V 3.3V	I/O	P05T X D0R	AJ21	3.3V 3.3V	I/O	PIORXER	W28	3.3V 3.3V	i
DAT A10		3.3V	١ <i>/</i> D	POOT XENR	AF 07	3.3V	0	P05T X D2R	AK 21		U/D	P10TXCLK	W27	3.3V	I
DAT A11 DAT A12	AD02	3.3V 3.3V	al Al	P01CRSR P01RXCLKR	AG08	3.3V 3.3V	0,1 0,1	P05T X D3R P05T XE NR	AH20 AG20		QI O	P10TXD0 P10TXD1	Y 29 Y 28	3.3V 3.3V	0 0
DAT A13		3.3V	I/O	P01RXD0R	AK 09		1/0	P06COLR	AJ24	3.3V	۵.	P 10T X D2	Y 27	3.3V	0
DAT A14		3.3V	۵.	P01RXD1R					AK 24		١/D		AA30		0
DAT A15 DAT A16		3.3V 3.3V	al Al	P01RXD2R P01RXD3R	AE 11 AF 11			P06RXCLKR P06RXD0R	AF 22 AJ 26		I/O I	P10TXEN P11COL	Y 30 V 30	3.3V 3.3V	0 1
DAT A17	AA02	3.3V	I/D	P01RXDVR	AJ09	3.3V	I	P06RXD1R	AK 27	3.3V	I	P11CRS	V29	3.3V	Ì
DAT A18 DAT A19	AA01 Y02	3.3V 3.3V	al Al	P01RXERR P01T XCLKR			l I/O	P06RXD2R P06RXD3R				P11RXCLK P11RXD0	T 30 R 29	3.3V 3.3V	
DAT A19 DAT A20		3.3V 3.3V	I/O	POTT X DOR			I/O	P06RXDSR P06RXDVR				P11RXD0	R29 R28	3.3V 3.3V	1
DAT A21		3.3V	١ <i>/</i> D		AK 07		١ <i>/</i> D	P06RXERR			1	P11RXD2	R27	3.3V	1
DAT A22 DAT A23	W01 V02	3.3V 3.3V	al Al	P01T XD2R P01T XD3R	AJ07 AF 09		0,1 1/0	P06T X CL K R P06T X D0R			al Al	P11RXD3 P11RXDV	R26 R30	3.3V 3.3V	
DAT A23	V02	3.3V	I/O	P01T XE NR			0	P06T XD1R			I/O	P11RXER	T 27	3.3V	i I
DAT A25	U02	3.3V	١ <i>Ю</i>	P02COLR	AJ10		I/D	P06T X D2R			I/O	P11T XCLK	T 28	3.3V	
DAT A26 DAT A27	U01 T 02	3.3V 3.3V	al Al	P02CRSR P02RXCLKR	AH10 A J12		0,1 1/0	P06T X D3R P06T XE NR			QI O	P11T XD0 P11T XD1	U30 U29	3.3V 3.3V	0
DAT A28	T 01	3.3V	I/O	P02RXD0R			1	P07COLR	AK 28		۵.	P11T XD2	U28	3.3V	0
DAT A29	R02	3.3V	۵.		AF 13			P07CRSR	AJ27		١/D	P11T XD3	U27	3.3V	0
DAT A30 DAT A31	R01 P02	3.3V 3.3V	al Al	P02RXD2R P02RXD3R	AG13 AH13			P07RXCLKR P07RXD0R			I/O I	P11T XE N P12COL	T 29 P 30	3.3V 3.3V	0 1
DAT A32	P01	3.3V	0,I	P02RXDVR	AK 12	3.3V	I	P07RXD1R	AG27	3.3V	I	P12CRS	R25	3.3V	1
DAT A33 DAT A34	N02 N01	3.3V 3.3V	Q.I Q.I	P02RXERR P02T XCLKR			l I/O	P07RXD2R P07RXD3R	AJ30			P12RXCLK P12RXD0	M30 M28	3.3V 3.3V	
DAT A34 DAT A35	M01	3.3V 3.3V	ID ID	P02T X CL K R P02T X DOR	AG12 AJ11		I/O	P07RXD3R P07RXDVR				P12RXD0 P12RXD1	L 30	3.3V 3.3V	
DAT A36	M01	3.3V	0,I	P02T XD1R	AH11	3.3V	١ <i>/</i> O	P07RXERR	AF 25	3.3V	I	P12RXD2	N26	3.3V	I
DAT A37 DAT A38	L02 L01	3.3V 3.3V	al Al	P02T XD2R P02T XD3R			0,1 0,1	P07T XCLKR P07T XD0R			al Al	P12RXD3 P12RXDV	N25 M29	3.3V 3.3V	
DAT A30 DAT A39	K02	3.3V 3.3V	I/O	P02TXD3R P02TXENR			0	P07T XD0R P07T XD1R			I/O	P12RXER	N27	3.3V 3.3V	
DAT A40		3.3V	۵.	P03COLR	AK 13		١/D	P07T X D2R			۵.	P12T XCLK		3.3V	
DAT A42	J01	3.3V	١,D	PO3RXCLKR	AK 15	3.3V	١/D	P07T XENR	AK 29	3.3V	0	P12T XD0	N30	3.3V	0

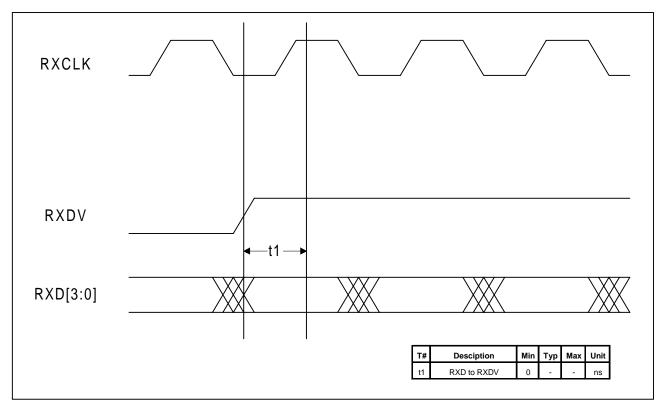
Pin List B	v Name ((With	Voltage	Rating):	Part 2
			+ Ontage	rtating).	

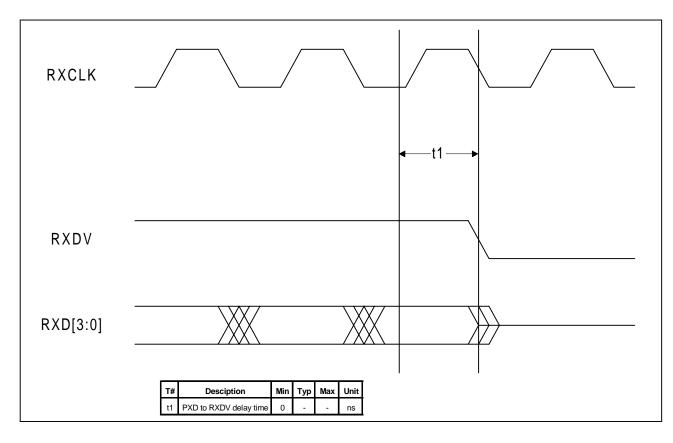

	Jy 140		(WW ICI I	Voltage H	τ	<u>97. i</u>									
Signal Name	Pin	٧o	Туре	Signal Name	Pin		Туре	Signal Name	Pin	٧O	Туре	Signal Name	Pin	I/O	Туре
P12T X D1	P27	3.3V	0	P17RXER	A24	3.3V	I	P22RXD1R	F 09	3.3V	I	VDD	Y05		Power
P12T X D2	P28	3.3V	0	P17T XCLK	B24	3.3V	I	P22RXD2R	B 05	3.3V	I	VDD	AB26	3.3V	Power
P12T XD3	P29	3.3V	0	P17T XD0	F 22	3.3V	0	P22RXD3R	A04	3.3V	I	VDD			Power
P12T XEN	N29 L 29	3.3V 3.3V	0	P 17T XD1 P 17T XD2	D23 C24	3.3V 3.3V	0 0	P22RXDVR P22RXERR	D08 A05	3.3V 3.3V		VDD VDD	AF 12 AF 19	3.3V 3.3V	Power Power
P13COL P13CRS	L 29 M27	3.3V 3.3V	1	P17T XD2	A25	3.3V 3.3V	0	P22RAERR P22T XCLKR	A05 B06	3.3V 3.3V	I/O	VDD	AF 19 AF 26	3.3V 3.3V	Power
P13RXCLK	H30	3.3V	i	P17T XEN	E 22	3.3V	0	P22T X DOR	D09	3.3V	0	VDD	E 05		Power
P13RXD0	K27	3.3V	Ì	P18COL	D21	3.3V	Ĩ	P22T XD1R	A06	3.3V	Õ	VDD	E 12	3.3V	Power
P13RXD1	L26	3.3V	I	P18CRS	A22	3.3V	I	P22T XD2R	B07	3.3V	Ο	VDD	E 19	3.3V	Power
P13RXD2	L25	3.3V	I	P18RXCLK	B20	3.3V	Ι	P22T XD3R	A07	3.3V	0	VDD	E 26	3.3V	Power
P13RXD3	J28	3.3V	I	P18RXD0	D19	3.3V	I	P22T XENR	C08	3.3V	0	VDD	M05	3.3V	
P13RXDV	H29	3.3V	1	P18RXD1	C19	3.3V		P23COLR	D07	3.3V	I/O	VDD	M26	3.3V	Power
P13RXER P13TXCLK	J29 K28	3.3V 3.3V		P18RXD2 P18RXD3	F 18 E 18	3.3V 3.3V	1	P23CRSR P23RXCLKR	C06 D05	3.3V 3.3V	QI QI	VDD VDD	W05 W26	3.3V 3.3V	
P13T X D0	J30	3.3V	Ö	P18RXDV	A20	3.3V	, I	P23RX DOR	A01	3.3V	1/0	VSS	A19	0.0 V	Ground
P13T XD1	K29	3.3V	Ō	P18RXER	C20	3.3V	Ì	P23RXD1R	B02	3.3V	Ì	VSS	AA04		Ground
P13T XD2	K 30	3.3V	0	P18TXCLK	D20	3.3V	I	P23RXD2R	C03	3.3V	I	VSS	AA06		Ground
P13T X D3	L28	3.3V	0	P 18T X D0	B21	3.3V	0	P23RXD3R	D04	3.3V	Ι	VSS	AA25		Ground
P13T XEN	L27	3.3V	0	P18T XD1	C21	3.3V	0	P23RXDVR	E 06	3.3V	I	VSS	AB06		Ground
P14COL P14CRS	G29 G30	3.3V 3.3V	1	P 18T XD2 P 18T XD3	E 20 F 20	3.3V 3.3V	0 0	P23RXERR P23TXCLKR	F 07 B 03	3.3V 3.3V	l I/O	VS S VS S	AB 25 AC06		Ground Ground
P14RXCLK	J26	3.3V 3.3V	i	P 18T XEN	A21	3.3V 3.3V	0	P23T X DOR	D06	3.3V 3.3V	0	VSS	AC00 AC25		Ground
P14RXD0	E 29	3.3V	i	P19COL	C18	3.3V	I	P23T XD1R	C05	3.3V	Õ	VSS	AD06		Ground
P14RXD1	D30	3.3V	I	P19CRS	D18	3.3V	I	P23T X D2R	A03	3.3V	Ο	VSS	AE 05		Ground
P14RXD2	F 28	3.3V	I	P19RXCLK	C16	3.3V	I	P23T XD3R	B04	3.3V	Ο	VSS	AE 06		Ground
P14RXD3	G27	3.3V	I	P19RXD0	A16	3.3V	I	P23T XENR	E 07	3.3V	0	VSS	AE 08		Ground
P14RXDV	J25	3.3V	1	P19RXD1	A15	3.3V		ST AT 0	B01	3.3V	0	VSS	AE 10		Ground
P14RXER P14TXCLK	H27 G28	3.3V 3.3V	1	P19RXD2 P19RXD3	B15 C15	3.3V 3.3V	1	ST AT 1 ST AT 2	C01 C02	3.3V 3.3V	0	VS S VS S	AE 12 AE 14		Ground Ground
P14T X D0	F 29	3.3V	Ö	P19RXDV	D16	3.3V	, I	ST AT 3	D01	3.3V	Ö	VSS	AE 15		Ground
P14T XD1	H28	3.3V	0	P19RXER	B16	3.3V	I	VDD	A02	3.3V	Power	VSS	AE 17		Ground
P14T XD2	J27	3.3V	0	P19TXCLK	A17	3.3V	I	VDD	AA03	3.3V	Power	VS S	AE 19		Ground
P14T XD3	F 30	3.3V	0	P19T XD0	C17	3.3V	0	VDD		3.3V		VSS	AE 21		Ground
P14T XEN	E 30	3.3V	0	P 19T XD1 P 19T XD2	D17 A18	3.3V	0	VDD	AA26		Power Power	VS S VS S	AE 23		Ground
P15COL P15CRS	C30 D29	3.3V 3.3V	1	P 191 XD2 P 19T XD3	B18	3.3V 3.3V	0 0	VDD VDD	AB 03 AB 05	3.3V 3.3V	Power	VSS	AE 24 AE 25		Ground Ground
P15RXCLK	E 27	3.3V	i	P 19T XE N	B17	3.3V	0	VDD		3.3V		VSS	AJ03		Ground
P15RXD0	A30	3.3V	I	P1COLR	AE 09		I/O	VDD	AC26		Power	VSS	C04		Ground
P15RXD1	B29	3.3V	I	P20COL	E 15	3.3V	I	VDD			Power	VSS	F 06		Ground
P15RXD2	C28	3.3V	I	P20CRS	D15	3.3V	I	VDD	AF 08	3.3V	Power	VSS	F 08		Ground
P15RXD3	D27 F 26	3.3V		P20RXCLK P20RXD0	C13 A12	3.3V	I	VDD VDD	AF 10 AF 14	3.3V 3.3V	Power	VS S VS S	F 10 F 12		Ground Ground
P 15RXDV P 15RXER	г 20 G25	3.3V 3.3V	1	P20RXD0 P20RXD1	B12	3.3V 3.3V	1	VDD VDD			Power Power	VSS	F12 F14		Ground
P15T XCLK	D28	3.3V	i	P 20R X D2	C12	3.3V	, I	VDD	AF 17	3.3V	Power	VSS	F 16		Ground
P15T X D0	C29	3.3V	0	P20RXD3	A11	3.3V	I	VDD			Power	VSS	F17		Ground
P15T X D1	G26	3.3V	0	P20RXDV	D13	3.3V	I	VDD	AF 23	3.3V	Power	VSS	F 19		Ground
P15T X D2	F27	3.3V	0	P20RXER	B13	3.3V	I	VDD			Power	VSS	F 21		Ground
P15T XD3	E 28	3.3V	0	P 20T X CL K	A13	3.3V	I	VDD	B19	3.3V	Power Power	VSS	F 23		Ground
P 15T XE N P 16COL	B 30 B 28	3.3V 3.3V	0	P 20T X D0 P 20T X D1	C14 B14	3.3V 3.3V	0 0	VDD VDD	E 08 E 10		Power	VS S VS S	F 25 G06		Ground Ground
P16CRS	A29	3.3V	i I	P 20T X D2	A14	3.3V	0	VDD	E 14		Power	VSS	H06		Ground
P16RXCLK	D25	3.3V	I	P 20T X D3	F 15	3.3V	Ο	VDD	E 16	3.3V	Power	VSS	H25		Ground
P16RXD0	C26	3.3V	I	P 20T XE N	D14	3.3V	Ο	VDD	E 17		Power	VSS	J06		Ground
P16RXD1	B26	3.3V	I	P21COL	F13	3.3V	I	VDD	E 21		Power	VSS	K06		Ground
P16RXD2 P16RXD3	A26 D24	3.3V 3.3V	1	P21CRS P21RXCLK	E 13 C10	3.3V 3.3V	I	VDD VDD	E 23 G05		Power Power	VS S VS S	K 25 L 06		Ground Ground
P16RXDS	E 24	3.3V 3.3V		P21RXCLK P21RXD0	A08	3.3V 3.3V	1	VDD	G05 H05		Power	VSS	M06		Ground
P16RXER	A27	3.3V	i I	P21RXD1	B08	3.3V	I	VDD	H26		Power	VSS	M25		Ground
P16T XCLK	F24	3.3V	I	P21RXD2	D10	3.3V	I	VDD	J05		Power	VSS	N06		Ground
P16T X D0	A28	3.3V	0	P21RXD3	E 11	3.3V	I	VDD	K 05		Power	VSS	P04		Ground
P16T XD1	E 25	3.3V	0	P21RXDV	B09	3.3V	I	VDD	K 26		Power	VSS	P06		Ground
P16T XD2	D26	3.3V	0		D11	3.3V	I	VDD	L05		Power	VSS	P25		Ground
P16T X D3 P16T XE N	C27 B27	3.3V 3.3V	0	P21T XCLK P21T XD0	A09 A10	3.3V 3.3V	I O	VDD VDD	N03 N05		Power Power	VS S VS S	R06 T 06		Ground Ground
P 101 XEIN P17COL	B27 B25	3.3V 3.3V	I	P211 XD0 P21T XD1	C11	3.3V 3.3V	0	VDD	P05		Power	VSS	T 25		Ground
P17CRS	C25	3.3V	i	P21T XD2	B11	3.3V	Ő	VDD	P26		Power	VSS	U06		Ground
P17RXCLK	C23	3.3V	I	P21T XD3	D12	3.3V	0	VDD	R05	3.3V	Power	VSS	U25		Ground
P17RXD0	D22	3.3V	I	P21T XEN	B10	3.3V	0	VDD	T 05		Power	VSS	V06		Ground
P17RXD1	A23	3.3V	1	P22COLR	C09	3.3V		VDD	T 26		Power	VSS	W06		Ground
P17RXD2 P17RXD3		3.3V 3.3V		P22CRSR P22RXCLKR	F 11 C07	3.3V 3.3V	al Al	VDD VDD	U05 U26		Power Power	VS S VS S	W25 Y06		Ground Ground
P17RXD3 P17RXDV	B22 B23		1	P22RXCLKR P22RXD0R	E 09	3.3V 3.3V	I.O	VDD	V05			WCHDOG			O
	520	5.5 V			207	5.0 V		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.0 V			, a 10-t		0

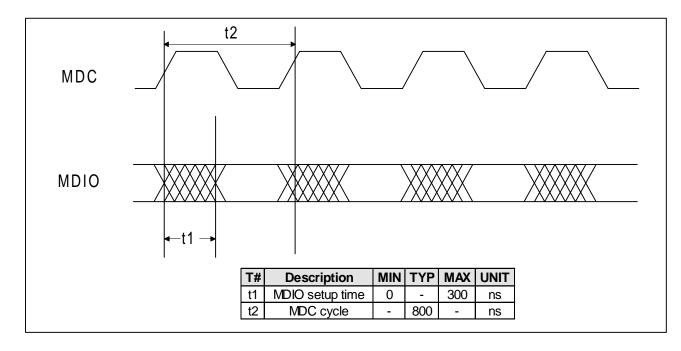
9. TIMING DESCRIPTION


MII Receive Timing

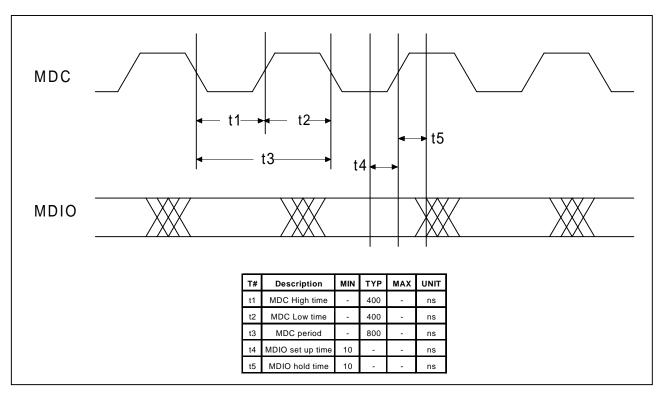

MII Transmit Timing

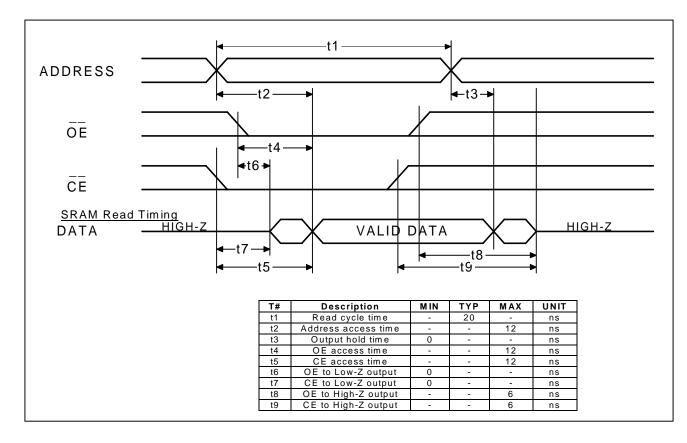

Reversed MII Receive Timing

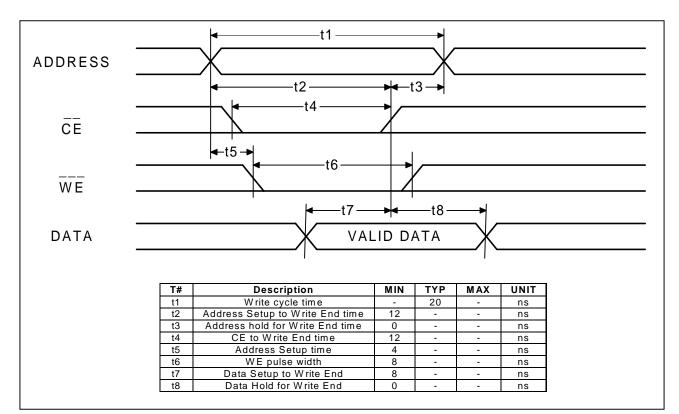

Reversed MII Transmit Timing

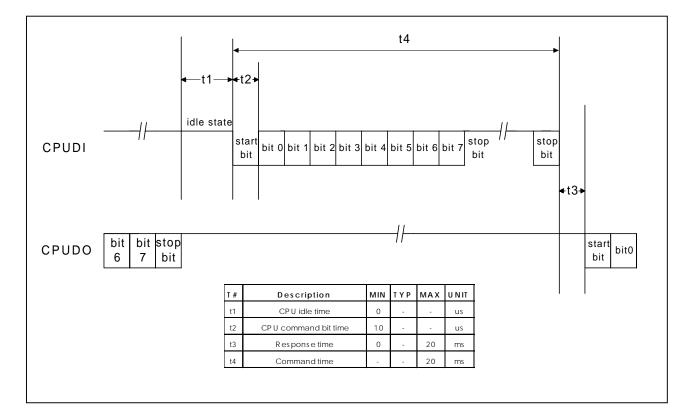


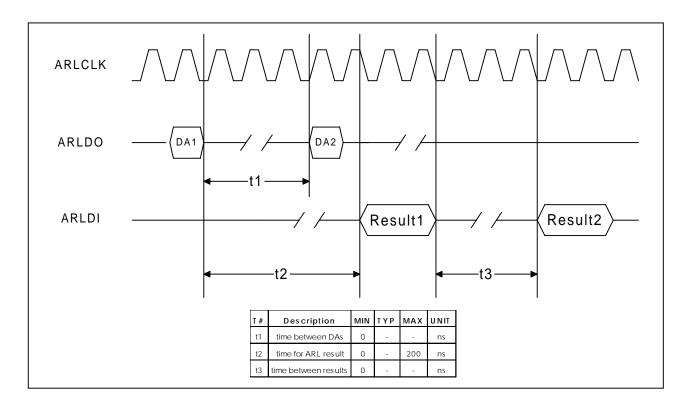
Reversed MII Packet Timing (Start of Packet)



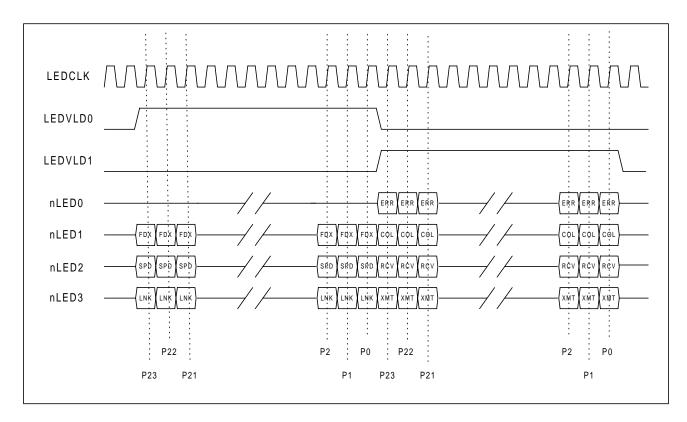

Reversed MII Packet Timing (End of Packet)




PHY Management Write Timing



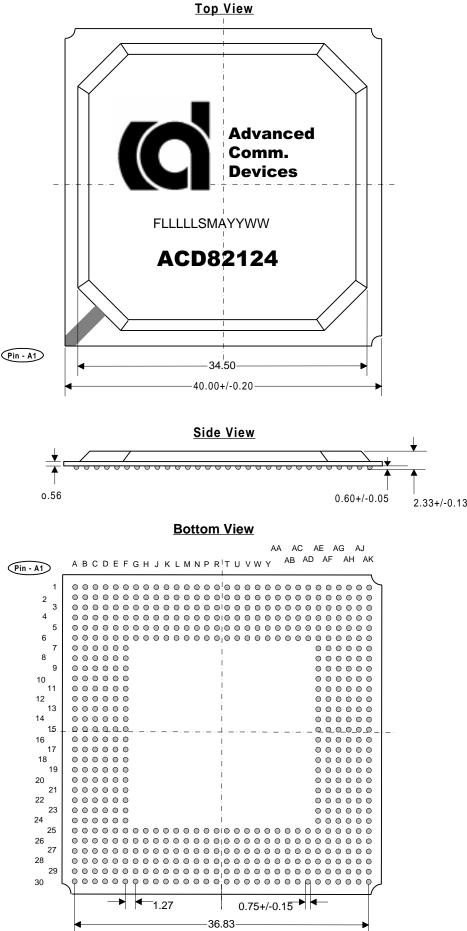
ASRAM Write Timing



ARL Result Timing

LED Signal Timing

10. ELECTRICAL SPECIFICATION


Absolute Maximum Ratings

Operation at absolute maximum ratings is not implied. Exposure to stresses outside those listed could cause permanent damage to the device.

DC Supply voltage : VDD	-0.3V ~ +5.0V
DC input current: lin	+/-10 mA
DC input voltage: Vin	-0.3 ~ VDD + 0.3V
DC output voltage: Vout	-0.3 ~ VDD + 0.3V
Storage temperature: Tstg	-40 to +125°C

Recommended Operation Conditions

Supply voltage: VDD	3.3V, +/-0.3V
Operating temperature: Ta	0°C -70 °C
Maximum power consumption	3.5W

Appendix-A1

Address Resolution Logic

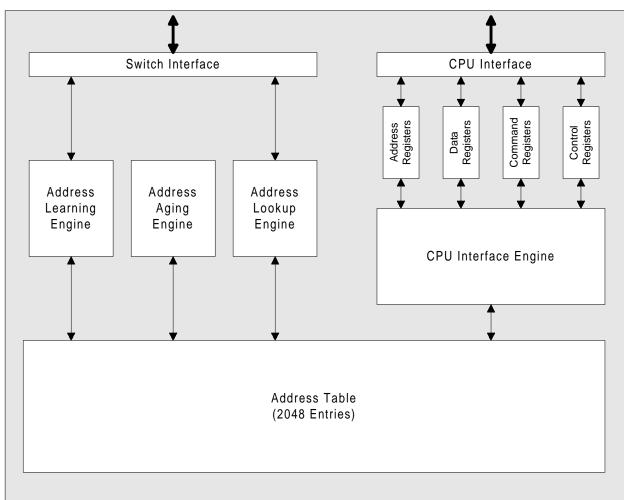
(The built-in ARL with 2048 MAC Addresses)

Data Sheet: ACD82124

ACD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

1. SUMMARY

The internal Address Resolution Logic (ARL) of ACD's switch controllers automatically builds up an address table and maps up to 2,048 MAC addresses into their associated port. It can work by itself without any CPU intervention in an UN-managed system.


For a managed system, the management CPU can configure the operation mode of the ARL, learn all the address in the address table, add new address into the table, control security or filtering feature of each address entry etc.

The ARL is designed with such a high performance that it will never slow down the frame switching operation. It helps the switch controllers to reach wire speed forwarding rate under any type of traffic load.

The address space can be expanded to 11K entries by using the external ARL, the ACD80800.

2. FEATURES

- Supports up to 2,048 MAC address lookup
- Provides UART type of interface for the management CPU
- Wire speed address lookup time.
- Wire speed address learning time.
- Address can be automatically learned from switch without the CPU intervention
- Address can be manually added by the CPU through the CPU interface
- Each MAC address can be secured by the CPU from being changed or aged out
- Each MAC address can be marked by the CPU from receiving any frame
- Each newly learned MAC address is notified to the CPU
- Each aged out MAC address is notified to the CPU
- Automatic address aging control, with configurable aging period

Figure-1. ARL Block Diagram

INTRODUCTORY

3. FUNCTIONAL DESCRIPTION

The ARL provides Address Resolution service for ACD's switch controllers. *Figure 2* is a block diagram of the ARL.

Traffic Snooping

All Ethernet frames received by ACD's switch controller have to be stored into memory buffer. As the frame data are written into memory, the status of the data shown on the data bus are displayed by ACD's switch controller through a state bus. The ARL's Switch Controller Interface contains the signals of the data bus and the state bus. By snooping the data bus and the state bus of ACD's switch controller, the ARL can detect the occurrence of any destination MAC address and source MAC address embedded inside each frame.

Address Learning

Each source address caught from the data bus, together with the ID of the ingress port, is passed to the Address Learning Engine of the ARL. The Address Learning Engine will first determine whether the frame is a valid frame. For a valid frame, it will first try to find the source address from the current address table. If that address doesn't exist, or if it does exist but the port ID associated with the MAC address is not the ingress port, the address will be learned into the address table. After an address is learned by the address learning engine, the CPU will be notified to read this newly learned address so that it can add it into the CPU's address table.

Address Aging

After each source address is learned into the address table, it has to be refreshed at least once within each address aging period. Refresh means it is caught again from the switch interface. If it has not occurred for a pre-set aging period, the address aging engine will remove the address from the address table. After an address is removed by the address aging engine, the CPU will be notified through interrupt request that it needs to read this aged out address so that it can remove this address from the CPU's address table.

Address Lookup

Each destination address is passed to the Address Lookup Engine of the ARL. The Address Lookup Engine checks if the destination address matches with any existing address in the address table. If it does, the ARL returns the associated Port ID to ACD's switch controller through the output data bus. Otherwise, a no match result is passed to ACD's switch controller through the output data bus.

CPU Interface

The CPU can access the registers of the ARL by sending commands to the UART data input line. Each command is consisted by action (read or write), register type, register index, and data. Each result of command execution is returned to the CPU through the UART data output line.

CPU Interface Registers

The ARL provides a bunch of registers for the control CPU. Through the registers, the CPU can read all address entries of the address table, delete particular addresses from the table, add particular addresses into the table, secure an address from being changed, set filtering on some addresses, change the hashing algorithm etc. Through a proper interrupt request signal, the CPU can be notified whenever it needs to retrieve data for a newly-learned address or an agedout address so that the CPU can build an exact same address table learned by the ARL.

CPU Interface Engine

The command sent by the control CPU is executed by the CPU Interface Engine. For example, the CPU may send a command to learn the first newly-learned address. The CPU Interface Engine is responsible to find the newly-learned address from the address table, and passes it to CPU. The CPU may request to learn next newly-learned address. Then, it is again the responsibility of the CPU Interface Engine to search for next newly-learned address from the address table.

Address Table

The address table can hold up to 2,048 MAC addresses, together with the associated port ID, security flag, filtering flag, new flag, aging information etc. The address table resides in the embedded SRAM inside the ARL.

4. INTERFACE DESCRIPTION

CPU Interface

The CPU can communicate with the ARL through the UART interface of the switch IC. The management CPU can send command to the ARL by writing into associated registers, and retrieve result from ARL by reading corresponding registers. The registers are described in the section of "Register Description." The CPU interface signals are described by *table-1*:

Table-1: CPU Interface

Name	I/O	Description
UARTDI	I	UART input data line.
UARTDO	0	UART output data line.

UARTDI is used by the control CPU to send command into the ARL. The baud rate will be automatically detected by the ARL. The result will be returned through the UARTDO line with the detected baud rate. The format of the command packet is shown as follows:

Tieadel Address Data Checksuiti	Header	Address Data		Checksum	
---------------------------------	--------	--------------	--	----------	--

where:

- Header is further defined as:
 - b1:b0 read or write, 01 for read, 11 for write

b4:b2 - device number, 000 to 111 (0 to 7, same as the host switch controller)

b7:b5 - device type, 010 for ARL

- Address 8-bit value used to select the register to access
- Data 32-bit value, only the LSB is used for write operation, all 0 for read operation
- Checksum 8-bit value of XOR of all bytes

UARTDO is used to return the result of command execution to the CPU. The format of the result packet is shown as follows:

Header Address Data Checksum

where:

- Header is further defined as: b1:b0 - read or write, 01 for read, 11 for write b4:b2 - device number, 000 to 111 (0 to 7)
 - b7:b5 device type, 010 for ARL
- Address 8-bit value for address of the selected register
- Data 32-bit value, only the LSB is used for read operation, all 0 for write operation
- Checksum 8-bit value of XOR of all bytes

The ARL will always check the CMD header to see if both the device type and the device number matches with its setting. If not, it ignores the command and will not generate any response to this command.

ACD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

5. REGISTER DESCRIPTION

ACD80800 provides a bunch of registers for the CPU to access the address table inside it. Command is sent to ACD80800 by writing into the associated registers. Before the CPU can pass a command to ACD80800, it must check the result register (register 11) to see if the command has been done. When the Result register indicates the command has been done, the CPU may need to retrieve the result of previous command first. After that, the CPU has to write the associated parameter of the command into the Data registers. Then, the CPU can write the command type into the command register. When a new command is written into the command register, ACD80800 will change the status of the Result register to 0. The Result register will indicate the completion of the command at the end of the execution. Before the completion of the execution, any command written into the command register is ignored by ACD80800.

The registers accessible to the CPU are described by *table-2*:

Table	-2: Register Des	scription
Reg.	Name	Description
0	DataReg0	Byte 0 of data
1	DataReg1	Byte 1 of data
2	DataReg2	Byte 2 of data
3	DataReg3	Byte 3 of data
4	DataReg4	Byte 4 of data
5	DataReg5	Byte 5 of data
6	DataReg6	Byte 6 of data
7	DataReg7	Byte 7 of data
8	AddrReg0	LSB of address value
9	AddrReg1	MSB of address value
10	CmdReg	Command register
11	RsltReg	Result register
12	CfgReg	Configuration register
13	IntSrcReg	Interrupt source register
14	IntMskReg	Interrupt mask register
15	nLearnReg0	Address learning disable register for port 0 - 7
16	nLearnReg1	Address learning disable register for port 8 - 15
17	nLearnReg2	Address learning disable register for port 16 - 23
18	AgeTimeReg0	LSB of aging period register
19	AgeTimeReg1	MSB of aging period register
20	PosCfg	Power On Strobe configuration register 0

Table-2: Register Description

The *DataRegX* are registers used to pass the parameter of the command to the ACD80800, and the result of the command to the CPU.

The *AddrRegX* are registers used to specify the address associated with the command.

The *CmdReg* is used to pass the type of command to the ACD80800. The command types are listed in *table-3*. The details of each command is described in the chapter of "Command Description."

Table-3: Command List

Table-3: Co	ommand List			
Command	Description			
0x09	Add the specified MAC address into the address table			
0x0A	Set a lock for the specified MAC address			
0x0B	Set a filtering flag for the specified MAC address			
0x0C	Delete the specified MAC address from the address table			
0x0D	Assign a port ID to the specified MAC address			
0x10	Read the first entry of the address table			
0x11	Read next entry of address book			
0x20	Read first valid entry			
0x21	Read next valid entry			
0x30	Read first new page			
0x31	Read next new page			
0x40	Read first aged page			
0x41	Read next aged page			
0x50	Read first locked page			
0x51	Read next locked page			
0x60	Read first filtered page			
0x61	Read next filtered page			
0x80	Read first page with specified PID			
0x81	Read next page with specified PID			
0xFF	System reset			

The *RstReg* is used to indicate the status of command execution. The result code is listed as follows:

- 01 command is being executed and is not done yet
- 10 command is done with no error
- 1x command is done, with error indicated by x, where x is a 4-bit error code: 0001 for cannot find the entry as specified

The *CfgReg* is used to configure the way the ACD80800 works. The bit definition of CfgReg is described as:

- bit 0 disable address aging
- bit 1 disable address lookup
- bit 2 disable DA cache
- bit 3 disable SA cache
- bit 7:4 hashing algorithm selection, default is 0000

The *IntSrcReg* is used to indicate what can cause interrupt request to CPU. The source of interrupt is listed as:

- bit 0 aged address exists
- bit 1 new address exists
- bit 2 reserved
- bit 3 reserved
- bit 4 bucket overflowed
- bit 5 command is done
- bit 6 system initialization is completed
- bit 7 self test failure

The *IntMskReg* is used to enable an interrupt source to generate an interrupt request. The bit definition is the same as IntSrcReg. A 1 in a bit enables the corresponding interrupt source to generate an interrupt request once it is set.

The *nLearnReg[2:0]* are used to disable address learning activity from a particular port. If the bit corresponding to a port is set, ACD80800 will not try to learn new addresses from that port.

The *AgeTimeReg[1:0]* are used to specify the period of address aging control. The aging period can be from 0 to 65535 units, with each unit counted as 2.684 second.

The *PosCfgReg* is a configuration register whose default value is determined by the pull-up or pull-down status of the associated hardware pin. The bits of PosCfgReg0 is listed as follows:

- bit 3 BISTEN: "0" = self test disabled, "1" = self test enabled;
- bit 2 TESTEN, "0" = normal operation, "1" = production test enabled;
- bit 1* NOCPU*, "0" = presence of control CPU, "1" = no control CPU;
- bit 0 CPUGO, "0" = wait for System Start command from CPU before starting self initialization, "1" = CPU ready. Only effective when bit-1 (NOCPU) is set to 0;

Note: When *NOCPU* is set as 0, ACD80800 will not start the initialization process until a System Start command is sent to the command register.

INTRODUCTORY

6. COMMAND DESCRIPTION

Command 09H

Description: Add the specified MAC address into the address table.

Parameter: Store the MAC address into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. Store the associated port number into DataReg6.

Result: the MAC address will be stored into the address table if there is space available. The result is indicated by the Result register.

Command 0AH

Description: Set the Lock bit for the specified MAC address.

Parameter: Store the MAC address into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB.

Result: the state machine will seek for an entry with matched MAC address, and set the Lock bit of the entry. The result is indicated by the Result register.

Command 0BH

Description: Set the Filter flag for the specified MAC address.

Parameter: Store the MAC address into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB.

Result: the state machine will seek for an entry with matched MAC address, and set the Filter bit of the entry. The result is indicated by the Result register.

Command 0CH

Description: Delete the specified MAC address from the address table.

Parameter: Store the MAC address into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB.

Result: the MAC address will be removed from the address table. The result is indicated by the Result register.

Command 0DH

Description: Assign the associated port number to the specified MAC address.

Parameter: Store the MAC address into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. Store the port number into DataReg6.

Result: the port ID field of the entry containing the specified MAC address will be changed accordingly. The result is indicated by the Result register.

Command 10H

Description: Read the first entry of the address table.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of the first entry of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag^{*} bits are stored in DataReg7. The Read Pointer will be set to point to second entry of the address book.

Note - the Flag bits are defined as:

b7	b6	b5	b4	b3	b2	b1	b0
Rsvd	Rsvd	Filter	Lock	New	Old	Age	Valid

where:

- Filter 1 indicates the frame heading to this address should be dropped.
- Lock 1 indicates the entry should never be changed or aged out.
- New 1 indicates the entry is a newly learned address.
- Old 1 indicates the address has been aged out.
- Age 1 indicates the address has not been visited for current age cycle.
- Valid 1 indicates the entry is a valid one.
- Rsvd Reserved bits.

Command 11H

Description: Read next entry of address book.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of the address book entry pointed by Read Pointer will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer will be increased by one.

Command 20H

Description: Read first valid entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of first valid entry of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 21H

Description: Read next valid entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of next valid entry from the Read Pointer of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 30H

Description: Read first new page.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content

of first new entry of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 31H

Description: Read next new entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of next new entry from the Read Pointer of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 40H

Description: Read first aged entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of first aged entry of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 41H

Description: Read next aged entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of next aged entry from the Read Pointer of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Data Sheet: ACD82124

4CD Confidential. Do Not Reproduce. Use under Non-Disclosure Agreement only.

Command 50H

Description: Read first locked entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of first locked entry of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 51H

Description: Read next locked entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of next locked entry from the Read Pointer of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 60H

Description: Read first filtered page.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content of first filtered entry of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 61H

Description: Read next valid entry.

Parameter: None

Result: The result is indicated by the Result register. If the command is completed with no error, the content

of next filtered entry from the Read Pointer of the address book will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 80H

Description: Read first entry with specified port number.

Parameter: Store port number into DataReg6.

Result: The result is indicated by the Result register. If the command is completed with no error, the content of first entry of the address book with the said port number will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command 81H

Description: Read next valid entry.

Parameter: Store port number into DataReg6.

Result: The result is indicated by the Result register. If the command is completed with no error, the content of next entry from the Read Pointer of the address book with the said port number will be stored into the Data registers. The MAC address will be stored into DataReg5 - DataReg0, with DataReg5 contains the MSB of the MAC address and DataReg0 contains the LSB. The port number is stored in DataReg6, and the Flag bits are stored in DataReg7. The Read Pointer is set to point to this entry.

Command FFH

Description: System reset.

Parameter: None

Result: This command will reset the ARL system. All entries of the address book will be cleared.