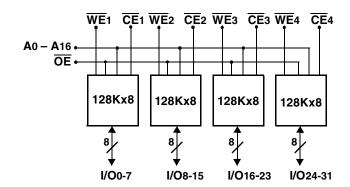
ACT-E128K32 High Speed 4 Megabit EEPROM Multichip Module


CIRCUIT TECHNOLOGY www.aeroflex.com

Features

- 4 Low Power 128K x 8 EEPROM Die in One MCM Packaging Hermetic Ceramic **Package**
- Organized as 128K x 32 • User Configurable to 256K x 16 or 512K x 8
- **CMOS and TTL Compatible Inputs and Outputs**
- Access Times of 120,140,150,200,250&300ns
- Automatic Page Write Operation
- Page Write Cycle Time: 10ms Max
- Data Retention Ten Years Minimum
- **Low Power CMOS**
- Data Polling for End of Write Detection
- Industry Standard Pinouts

- - 66 Pin, 1.08" x 1.08" x .160" PGA Type, No Shoulder, Aeroflex code# "P3"
 - 66 Pin, 1.08" x 1.08" x .185" PGA Type, With Shoulder, Aeroflex code# "P7"
 - 68 Lead, .88" x .88" x .200" Dual-Cavity Small Outline Gull Wing, Aeroflex code# "F2" (Drops into the 68 Lead JEDEC .99"SQ CQFJ footprint)
- MIL-PRF-38534 Compliant MCMs Available
- Hardware and Software Data Protection
- Internal Decoupling Capacitors for Low Noise Operation
- Commercial, Industrial and Military Temperature Ranges
- SMD# 5962-94585 Released (P7 & F2)

Block Diagram – PGA Type Package (P3,P7) & CQFP (F2)

Pin Description

I/O0-31	Data I/O				
A 0–16	Address Inputs				
WE 1-4	Write Enables				
ŌE	Output Enable				
CE1-4	Chip Enables				
Vcc	Power Supply				
GND	Ground				

General Description

The ACT-E128K32 is a high megabit, CMOS speed. module EEPROM multichip (MCM) designed for full temperature range military. high space, or reliability applications. The MCM can be organized as a 256K x 16 bits or 512K x 8 bits device and is input and output CMOS and compatible. Writing is executed when the write enable (WE) and chip enable (CE) inputs are low and output enable (OE) is high. Reading is accomplished when WE is high and CE and OE are both low. grades times Access 120, 140, 150, 200, 250 & 300ns are standard.

The ACT-E128K32 packaged in a choice of hermetically sealed co-fired ceramic packages, a 66 pin, 1.08" sq PGA or a 68 lead, .88" sq gullwing CQFP. The device operates over the temperature range of -55°C to +125°C and military environment.

Absolute Maximum Ratings

Parameter	Symbol	Range	Units
Operating Temperature	Tc	-55 to +125	°C
Storage Temperature Range	Tstg	-65 to +150	°C
All Input Voltages with respect to Ground	VG	-0.6 to +6.25	V
All Output Voltages with respect to Ground	-	-0.6 to Vcc+0.6	V
Voltage on $\overline{\text{OE}}$ and A9 with respect to Ground	-	-0.6 to +13.5	V

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Minimum	Maximum	Units
Vcc	Power Supply Voltage	+4.5	+5.5	V
ViH	Input High Voltage	+2.0	V _{CC} + 0.3	V
VIL	Input Low Voltage	-0.5	+0.8	V
Tc	Case Operating Temperature (Military)	-55	+125	°C

Capacitance

 $(VIN = 0V, f = 1MHz, Tc = 25^{\circ}C)$

Symbol	Parameter	Maximum	Units
CAD	Ao – A16 Capacitance	50	pF
COE	Output Enable Capacitance	50	pF
CWE(1-4)	Write Enable Capacitance	20	pF
CCE(1-4)	Chip Enable Capacitance	20	pF
Cı/o	I/O0 – I/O31 Capacitance	20	pF

DC Characteristics

(Vcc = 5.0V, Vss = 0V, Tc = -55 $^{\circ}$ C to +125 $^{\circ}$ C, unless otherwise specified)

Parameter	Sym	Conditions	Minimum	Maximum	Units
Input Leakage Current	ILI	Vcc = 5.5V, Vin = GND to Vcc		10	μΑ
Output Leakage Current	ILOx32	CE = OE = VIH, VOUT = GND to VCC		10	μΑ
Operating Supply Current x 32 Mode	ICCx32	$\overline{CE} = VIL, \overline{OE} = VIH, f = 5Mhz$		250	mA
Operating Supply Current	Isb	$\overline{CE} = V_{IH}, \overline{OE} = V_{IH}, f = 5Mhz$		5	mA
Output Low Voltage	Vol	IOL = +2.1mA, VCC = 4.5V		0.45	V
Output High Voltage	Vон	$IOH = -400 \mu A$, $VCC = 4.5 V$	2.4		V

Truth Table

CE	ŌĒ	WE	Mode	Data I/O
Н	Х	Х	Standby	High Z
L	L	Н	Read	Data Out
L	Н	L	Write	Data In
Х	Н	X	Out Disable	High Z
Х	Х	Н	Write	-
Х	L	X	Inhibit	-

AC Write Characteristics

(Vcc = 5V, Vss = 0V, Tc = -55 $^{\circ}$ C to +125 $^{\circ}$ C)

Parameter	Symbol	Min	Max	Units
Write Cycle Time	twc		10	ms
Address Set-up Time	tas	10		ns
Write Pulse Width (WE or CE)	twp	150		ns
Chip Enable Set-up Time	tce	0		ns
Address Hold Time	tан	100		ns
Data Hold Time	tдн	10		ns
Chip Enable Hold Time	tсен	0		ns
Data Set-up Time	tos	100		ns
Output Enable Set-up Time	toes	10		ns
Output Enable Hold Time	tоен	10		ns

AC Read Characteristics

 $(VCC = 5V, VSS = 0V, TC = -55^{\circ}C \text{ to } +125^{\circ}C)$

Bood Cycle Beremeter	Symbol	-1	20	-1	40	_1	150	-2	200	-2	250	-3	00	Units
Read Cycle Parameter	Syllibol	Min	Max	Ullits										
Read Cycle Time	trc	120		140		150		200		250		300		ns
Address Access Time	tacc		120		140		150		200		250		300	ns
Chip Enable Access Time	tace		120		140		150		200		250		300	ns
Output Hold From Address Change, OE or CE	toн	0		0		0		0		0		0		ns
Output Enable to Output Valid	toe	0	55	0	55	0	55	0	55	0	85	0	85	ns
Chip Enable or OE to High Z Output	tof		70		70		70		70		70		70	ns

Page Write Characteristics

 $(VCC = 5V, VSS = 0V, TC = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Symbol	Minimum	Maximum	Units
Write Cycle Time	twc		10	ms
Address Set-up Time	tas	10		ns
Address Hold Time , See Note 1	tah	100		ns
Data Set-up Time	tos	100		ns
Data Hold Time	tрн	10		ns
Write Pulse Width	twp	150		ns
Byte Load Cycle Time	tвьс		150	μs
Write Pulse Width High	twрн	50		ns

Note 1 – Page Address must remain valid for duration of write cycle.

Device Operation

The ACT-E128K32 is a high-performance Electrically Erasable and Programmable Read Only Memory. It is composed of four 1 megabit memory chips and is organized as 131,072 by 32 bits. The device offers access times of 120 to 300ns with power dissipation of 1.375W. When the device is deselected, the CMOS standby current is less than 5 mA.

The ACT-E128K32 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 128-byte page register to allow writing of up to 128 bytes simultaneously. During a write cycle, the address and 1 to 128 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Aeroflex's ACT-E128K32 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes.

WRITE

A write cycle is initiated when \overline{OE} is high and a low pulse is on \overline{WE} or \overline{CE} with \overline{CE} or \overline{WE} low. The address is latched on the falling edge of \overline{CE} or \overline{WE} whichever occurs last. The data is latched by the rising edge of \overline{CE} or \overline{WE} , whichever occurs first. A byte write operation will automatically continue to completion.

WRITE CYCLE TIMING

Figures 2 and 3 show the write cycle timing relationships. A write cycle begins with address application, write enable and chip enable. Chip enable is accomplished by placing the CE line low. Write enable

consists of setting the $\overline{\text{WE}}$ line low. The write cycle begins when the last of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ goes low.

The WE line transition from high to low also initiates an internal delay timer to permit page mode operation. Each subsequent WE transition from high to low that occurs before the completion of the tBLC time out will restart the timer from zero. The operation of the timer is the same as a retriggable one-shot.

READ

The ACT-E128K32 stores data at the memory location determined by the address pins. When CE and OE are low and WE is high, this data is present on the outputs. When CE and OE are high, the outputs are in a high impedance state. This two line control prevents bus contention.

DATA POLLING

The ACT-E128K32 offers a data polling feature which allows a faster method of writing to the device. Figure 5 shows the timing diagram for this function. During a byte or page write cycle, an attempted read of the last byte written will result in the complement of the written data on I/O7 (For each Chip). Once the write cycle has been completed, true data is valid on all outputs and the next cycle may begin. Data polling may begin at any time during the write cycle.

PAGE WRITE OPERATION

The ACT-E128K32 has a page write operation that allows one to 128 bytes of data be written into the device and consecutively loads during the internal programming period. Successive bytes may be loaded in the same manner after the first data byte has been loaded. An internal timer begins a time out operation at each write cycle. If another write cycle is completed within tBLC or less, a new time out period begins. Each write cycle restarts the delay period. The write cycles can be continued as long as the interval is less than the time out period.

The usual procedure is to increment the least significant address lines from A0 through A6 at each write cycle. In this manner a page of up to 128 bytes can be loaded in to the EEPROM in a burst mode before beginning the relatively long interval programming cycle.

After the tBLC time out is completed, the EEPROM begins an internal write cycle. During this cycle the entire page will be written at the same time. The internal programming cycle is the same regardless of the number of bytes accessed.

SOFTWARE DATA PROTECTION

A software write protection feature may be enabled or disabled by the user. When shipped by Aeroflex Microelectronics, the ACT-E128K32 has the feature disabled. Write access to the device is unrestricted.

To enable software write protection, the user writes three access code bytes to three special internal locations. Once write protection has been enabled, each write to the EEPROM must use the same three byte write sequence to permit writing. The write protection feature can be disabled by a six

byte write sequence of specific data to specific locations. Power transitions will not reset the software write protection.

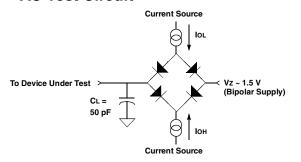
Each 128K byte block of the EEPROM has independent write protection. One or more blocks may be enabled and the rest disabled in any combination. The software write protection guards against inadvertent writes during power transitions, or unauthorized modification using a PROM programmer.

HARDWARE DATA PROTECTION

These features protect against inadvertent writes to the ACT-E128K32. These are included to improve reliability during normal operation:

- A) Vcc Sense While below 3.8V typical write cycles are inhibited.
- B) Write inhibiting

 Holding \overline{OE} low and either \overline{CE} or \overline{WE} high inhibits write cycles.
- C) Noise filter
 Pulses of <10ns (TYP) on WE or CE
 will not initiate a write cycle.


Data Polling Characteristics

 $(VCC = 5V, Vss = 0V, Tc = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Symbol	Min	Max	Units
Data Hold Time	tрн	10		ns
OE Hold Time	tоен	10		ns
OE to Output Valid	toe		55	ns
Write Recovery Time	twn	0		ns

Guaranteed. But not tested.

Figure 1 AC Test Circuit

Parameter	Typical	Units
Input Pulse Level	0 – 3.0	V
Input Rise and Fall	5	ns
Input and Output Timing Reference Level	1.5	V
Output Lead Capacitance	50	pF

Notes:

1) VZ is programmable from -2V to +7V. 2) IOL and IOH programmable from 0 to 16 mA. 3) Tester Impedance ZO = 75Ω . 4) VZ is typically the midpoint of VOH and VOL. 5) IOL and IOH are adjusted to simulate a typical resistance load circuit. 6) ATE Tester includes jig capacitance.

Figure 2
Write Waveforms – WE Controlled

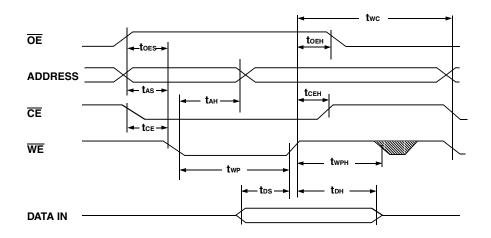


Figure 3
Write Waveforms – CE Controlled

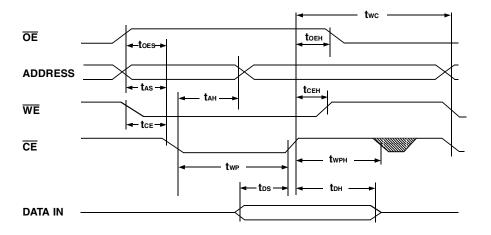
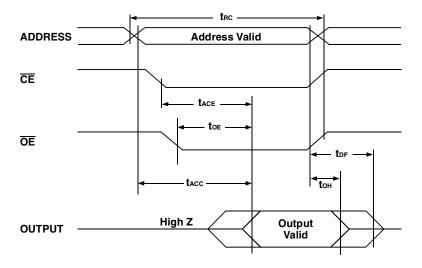
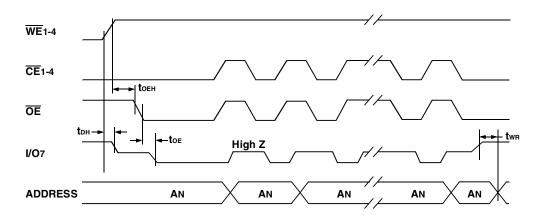
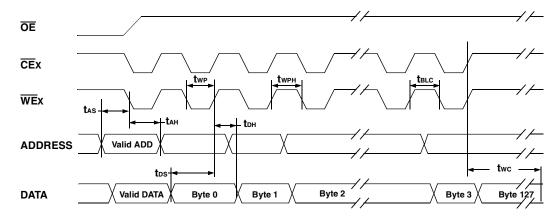
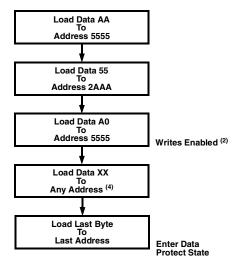



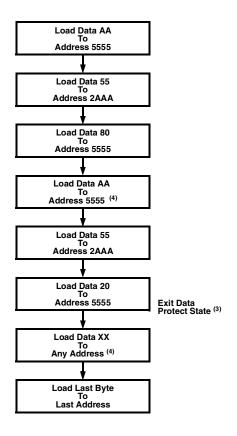
Figure 4
Read Waveforms

1. $\overline{\text{OE}}$ may be delayed up to tacs – toe after the falling edge of $\overline{\text{CE}}$ without impact on toe or by tacc – toe after an address change without impact on tacc.

Figure 5 **Data Polling Waveform**


Figure 6 **Page Mode Write Waveforms**



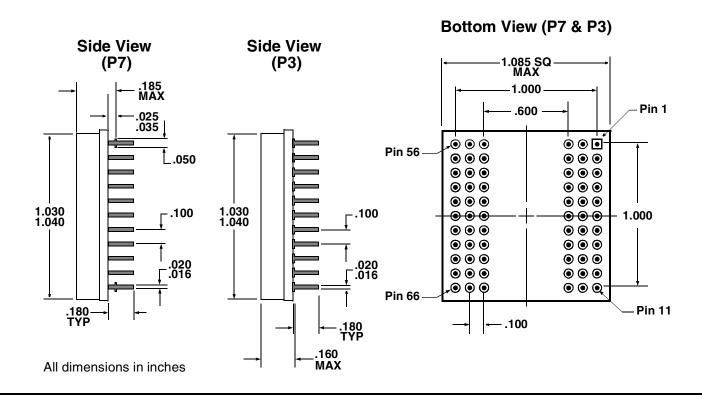
1. A7 through A16 must specify the sector address during each high to low transition of WE (or CE) after the software codes have been entered. 2. OE must be high when WE and CE are both low.

Figure 7 **Software Data Protection Enable Algorithm ®**

Figure 8 **Software Data Protection Disable Algorithm (1)**

NOTES:

- 1. Data Format: I/O0 I/O7 (Hex);
 Address Format: A14 A0 (Hex).
 2. Write Protect state will be activated at end ot write even if no other data is loaded.
- 3. Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 128 bytes of data may be loaded.

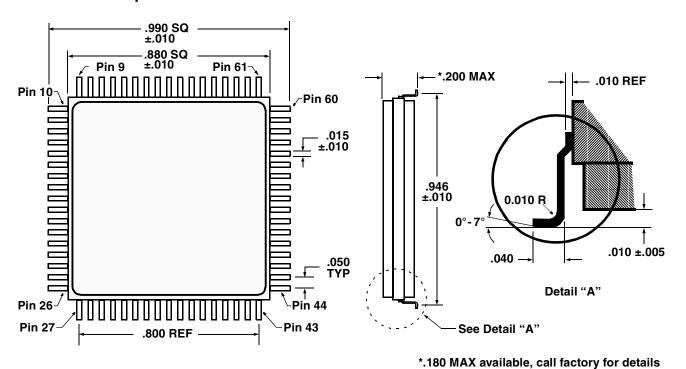

Pin Numbers & Functions

	66 Pins — PGA Type Package										
Pin #	Function	Pin #	Function	Pin #	Function	Pin #	Function				
1	I/O8	18	A12	35	I/O25	52	WE₃				
2	I/O9	19	Vcc	36	I/O26	53	CE ₃				
3	I/O10	20	CE ₁	37	A6	54	GND				
4	A 13	21	NC	38	A 7	55	I/O19				
5	A14	22	I/O3	39	NC	56	I/O31				
6	A 15	23	I/O15	40	A 8	57	I/O30				
7	A 16	24	I/O14	41	A 9	58	I/O29				
8	NC	25	I/O13	42	I/O16	59	I/O28				
9	I/Oo	26	I/O12	43	I/O17	60	Ao				
10	I/O ₁	27	ŌĒ	44	I/O18	61	A1				
11	I/O ₂	28	NC	45	Vcc	62	A 2				
12	WE ₂	29	WE ₁	46	CE ₄	63	I/O23				
13	CE ₂	30	I/O7	47	WE ₄	64	I/O22				
14	GND	31	I/O6	48	I/O27	65	I/O21				
15	I/O11	32	I/O ₅	49	Аз	66	I/O20				
16	A 10	33	I/O4	50	A4	_					
17	A11	34	I/O24	51	A 5						

Note: Pins 8, 21, 28 & 39 can be connected to ground by specifing Option "C".

"P3" — 1.08" SQ PGA Type (without shoulder) Package

"P7" — 1.08" SQ PGA Type (with shoulder) Package

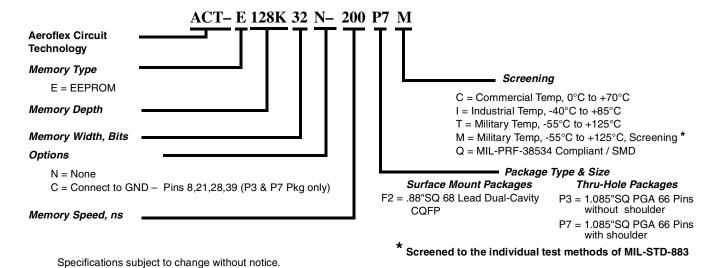


Pin Numbers & Functions

68 Pins — Dual-Cavity CQFP								
Pin #	Function	Pin #	Function	Pin #	Function	Pin #	Function	
1	GND	18	GND	35	ŌĒ	52	GND	
2	CE ₃	19	I/O8	36	CE ₂	53	I/O23	
3	A 5	20	I/O9	37	NC	54	I/O22	
4	A 4	21	I/O ₁₀	38	WE ₂	55	I/O21	
5	Аз	22	I/O11	39	₩E3	56	I/O20	
6	A 2	23	I/O12	40	WE ₄	57	I/O19	
7	A1	24	I/O13	41	NC	58	I/O18	
8	Ao	25	I/O14	42	NC	59	I/O17	
9	NC	26	I/O15	43	NC	60	I/O16	
10	I/Oo	27	Vcc	44	I/O31	61	Vcc	
11	I/O1	28	A11	45	I/O30	62	A10	
12	I/O2	29	A 12	46	I/O29	63	A 9	
13	I/O3	30	A13	47	I/O28	64	A 8	
14	I/O4	31	A 14	48	I/O27	65	A 7	
15	I/O ₅	32	A 15	49	I/O26	66	A 6	
16	I/O6	33	A 16	50	I/O25	67	WE1	
17	I/O7	34	CE ₁	51	I/O24	68	CE ₄	

Package Outline — Dual-Cavity CQFP "F2"

Top View


All dimensions in inches

Ordering Information

Model Number	DESC Drawing Number	Speed	Package
ACT-E128K32N-120P7Q	5962-9458506H4X	120ns	PGA Type
ACT-E128K32C-120P7Q	5962-9458506H5X	120ns	PGA Type
ACT-E128K32N-140P7Q	5962-9458505H4X	140ns	PGA Type
ACT-E128K32C-140P7Q	5962-9458505H5X	140ns	PGA Type
ACT-E128K32N-150P7Q	5962-9458504H4X	150ns	PGA Type
ACT-E128K32C-150P7Q	5962-9458504H5X	150ns	PGA Type
ACT-E128K32N-200P7Q	5962-9458503H4X	200ns	PGA Type
ACT-E128K32C-200P7Q	5962-9458503H5X	200ns	PGA Type
ACT-E128K32N-250P7Q	5962-9458502H4X	250ns	PGA Type
ACT-E128K32C-250P7Q	5962-9458502H5X	250ns	PGA Type
ACT-E128K32N-300P7Q	5962-9458501H4X	300ns	PGA Type
ACT-E128K32C-300P7Q	5962-9458501H5X	300ns	PGA Type
ACT-E128K32N-120F2Q	5962-9458506HMX	120ns	CQFP
ACT-E128K32N-140F2Q	5962-9458505HMX	140ns	CQFP
ACT-E128K32N-150F2Q	5962-9458504HMX	150ns	CQFP
ACT-E128K32N-200F2Q	5962-9458503HMX	200ns	CQFP
ACT-E128K32N-250F2Q	5962-9458502HMX	250ns	CQFP
ACT-E128K32N-300F2Q	5962-9458501HMX	300ns	CQFP

Part Number Breakdown

Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830 Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: 1-(800) 843-1553