FEATURES
Simple: Basic Function is $\mathbf{W}=\mathbf{X Y}+\mathbf{Z}$
Complete: Minimal External Components Required
Very Fast: Settles to $\mathbf{0 . 1 \%}$ of FS in 20 ns
DC-Coupled Voltage Output Simplifies Use
High Differential Input Impedance X, Y and Z Inputs
Low Multiplier Noise: $\mathbf{5 0} \mathbf{n V} / \sqrt{\mathrm{Hz}}$

APPLICATIONS

Very Fast Multiplication, Division, Squaring
Wideband Modulation and Demodulation
Phase Detection and Measurement
Sinusoidal Frequency Doubling
Video Gain Control and Keying
Voltage Controlled Amplifiers and Filters

PRODUCT DESCRIPTION

The AD 835 is a complete four-quadrant voltage output analog multiplier fabricated on an advanced dielectrically isolated complementary bipolar process. It generates the linear product of its X and Y voltage inputs, with a -3 dB output bandwidth of 250 M Hz (a small signal rise time of 1 ns). Full-scale (-1 V to +1 V) rise/fall times are 2.5 ns (with the standard R_{L} of 150Ω) and the settling time to 0.1% under the same conditions is typically 20 ns .
Its differential multiplication inputs (X, Y) and its summing input (Z) are at high impedance. The low impedance output voltage (W) can provide up to $\pm 2.5 \mathrm{~V}$ and drive loads as low as 25Ω. N ormal operation is from $\pm 5 \mathrm{~V}$ supplies.
Though providing state-of-the-art speed, the AD 835 is simple to use and versatile. For example, as well as permitting the addition of a signal at the output, the Z input provides the means to operate the AD 835 with voltage gains up to about $\times 10$. In this capacity, the very low product noise of this multiplier ($50 \mathrm{nV} \sqrt{\mathrm{Hz}}$) makes it much more useful than earlier products.
The AD 835 is available in an 8 -pin plastic mini-DIP package (N) and an 8-pin SOIC (R) and is specified to operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range.

REV. A

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. The AD 835 is the first monolithic 250 M Hz four quadrant voltage output multiplier.
2. M inimal external components are required to apply the AD 835 to a variety of signal processing applications.
3. H igh input impedances ($100 \mathrm{k} \Omega \| 2 \mathrm{pF}$) make signal source loading negligible.
4. High output current capability allows low impedance loads to be driven.
5. State of the art noise levels achieved through careful device optimization and the use of a special low noise bandgap voltage reference.
6. Designed to be easy to use and cost effective in applications which formerly required the use of hybrid or board level solutions.
© Analog Devices, Inc., 1994

One Technology Way, P.O. Box 9106, Nonwood. MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

AD835- SPECIFICATONS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 5 \mathrm{~V}, R_{L}=150 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}\right.$ unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Model \& \& \multicolumn{3}{|c|}{AD835AN/AR} \& \\
\hline TRANSFER FUNCTION \& \& w = \& \[
\frac{X 2)(Y 1}{U}
\] \& \& \\
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
INPUT CHARACTERISTICS (X,Y) \\
Differential Voltage Range \\
Differential Clipping Level \\
Low Frequency N onlinearity \\
vs. T emperature \\
Common-M ode Voltage Range \\
Offset Voltage \\
vs. T emperature \\
CMRR \\
Bias Current \\
vs. T emperature \\
Offset Bias Current \\
Differential Resistance \\
Single-Sided C apacitance \\
Feedthrough, \(X\) \\
F eedthrough, \(Y\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{CM}}=0 \\
\& X= \pm 1 \mathrm{~V}, \mathrm{Y}=1 \mathrm{~V} \\
\& \mathrm{Y}= \pm 1 \mathrm{~V}, \mathrm{X}=1 \mathrm{~V} \\
\& \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\
\& \mathrm{X}= \pm 1 \mathrm{~V}, \mathrm{Y}=1 \mathrm{~V} \\
\& \mathrm{Y}= \pm 1 \mathrm{~V}, \mathrm{X}=1 \mathrm{~V} \\
\& \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\
\& \mathrm{f} \leq 100 \mathrm{kH} ; \pm 1 \mathrm{~V} p-\mathrm{p} \\
\& \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}{ }^{1} \\
\& \\
\& X= \pm 1 \mathrm{~V}, Y=0 \mathrm{~V} \\
\& Y= \pm 1 \mathrm{~V}, \mathrm{X}=0 \mathrm{~V}
\end{aligned}
\] \& \(\pm 1.2\)

-2.5

70 \& \[
$$
\begin{aligned}
& \pm 1 \\
& \pm 1.4 \\
& 0.3 \\
& 0.1 \\
& \\
& \\
& \pm 3 \\
& \\
& 10 \\
& 2 \\
& 100 \\
& 2
\end{aligned}
$$

\] \& | 0.5 |
| :--- |
| 0.3 |
| 0.7 |
| 0.5 |
| +3 |
| ± 20 |
| ± 25 |
| 20 |
| 27 |
| -46 |
| -60 | \& | V |
| :--- |
| V |
| \% FS |
| \% FS |
| \% FS |
| \% FS |
| V |
| mV |
| mV |
| dB |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| $\mathrm{k} \Omega$ |
| pF |
| dB |
| dB |

\hline | DYNAMIC CHARACTERISTICS |
| :--- |
| -3 dB Small-Signal Bandwidth |
| -0.1 dB Gain Flatness F requency |
| Slew Rate |
| Differential Gain Error, X |
| Differential Phase Error, X |
| Differential Gain Error, Y |
| Differential Phase Error, Y |
| Harmonic D istortion |
| Settling Time, X or Y | \& \[

$$
\begin{aligned}
& \mathrm{W}=-2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \\
& \mathrm{f}=3.58 \mathrm{M} \mathrm{~Hz} \\
& \mathrm{X} \text { or } \mathrm{Y}=10 \mathrm{dBm}, \text { 2nd and 3rd } \mathrm{H} \text { armonic } \\
& \text { Fund }=10 \mathrm{M} \mathrm{~Hz} \\
& \text { Fund }=50 \mathrm{M} \mathrm{~Hz} \\
& \text { To } 0.1 \%, \mathrm{~W}=2 \mathrm{~V} \text { p-p }
\end{aligned}
$$

\] \& 150 \& \[

$$
\begin{aligned}
& 250 \\
& 15 \\
& 1000 \\
& 0.3 \\
& 0.2 \\
& 0.1 \\
& 0.1 \\
& \\
& -70 \\
& -40 \\
& 20 \\
& \hline
\end{aligned}
$$

\] \& \& | M Hz |
| :--- |
| M Hz |
| V/us |
| \% |
| D egrees |
| \% |
| D egrees |
| dB |
| dB |
| ns |

\hline SUMMING INPUT (Z) Gain -3 dB Small-Signal Bandwidth Differential Input Resistance Single Sided C apacitance M aximum G ain Bias Current \& | From Z to $\mathrm{W}, \mathrm{f} \leq 10 \mathrm{M} \mathrm{Hz}$ |
| :--- |
| X, Y to W, Z Shorted to $\mathrm{W}, \mathrm{f}=1 \mathrm{kHz}$ | \& 0.990 \& \[

$$
\begin{aligned}
& 0.995 \\
& 250 \\
& 60 \\
& 2 \\
& 50 \\
& 50
\end{aligned}
$$

\] \& \& | M Hz |
| :--- |
| k Ω |
| pF |
| dB |
| $\mu \mathrm{A}$ |

\hline | OUTPUT CHARACTERISTICS |
| :--- |
| Voltage Swing |
| vs. T emperature |
| Voltage N oise Spectral Density |
| Offset Voltage |
| vs. Temperature ${ }^{2}$ |
| Short C ircuit Current |
| Scale F actor Error |
| vs. T emperature |
| Linearity (Relative Error) ${ }^{3}$ |
| vs. T emperature | \& \[

$$
\begin{aligned}
& \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}{ }^{1} \\
& =\mathrm{Y}=0, \mathrm{f}<10 \mathrm{MHz} \\
& \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}{ }^{1} \\
& \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}{ }^{1} \\
& \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}{ }^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 2.2 \\
& \pm 2.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 2.5 \\
& 50 \\
& \pm 25 \\
& 75 \\
& \pm 5 \\
& \pm 0.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 75 \\
& \pm 10 \\
& \\
& \pm \mathbf{8} \\
& \pm 9 \\
& \pm 1.0 \\
& \pm 1.25
\end{aligned}
$$

\] \& | V |
| :--- |
| V |
| $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| mV |
| mV |
| mA |
| \% FS |
| \% FS |
| \% FS |
| \% FS |

\hline | POWER SUPPLIES |
| :--- |
| Supply Voltage |
| For Specified Performance |
| Quiescent Supply Current |
| vs. T emperature |
| PSRR at Output vs. Vp |
| PSRR at Output vs. Vn | \& \[

$$
\begin{aligned}
& \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}{ }^{1} \\
& +4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
& -4.5 \mathrm{~V} \text { to }-5.5 \mathrm{~V}
\end{aligned}
$$

\] \& ± 4.5 \& \[

$$
\begin{aligned}
& \pm 5 \\
& 16
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 5.5 \\
& \mathbf{2 5} \\
& 26 \\
& \mathbf{0 . 5} \\
& \mathbf{0 . 5}
\end{aligned}
$$

\] \& | V |
| :--- |
| mA |
| mA |
| \%/V |
| \%/V |

\hline
\end{tabular}

NOTES

${ }^{1} \mathrm{~T}_{\text {MIN }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {MAX }}=+85^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{~N}$ ormalized to zero at $+25^{\circ} \mathrm{C}$.
${ }^{3}$ Linearity is defined as residual error after compensating for input offset, output voltage offset and scale factor errors.
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage .. $\pm 6 \mathrm{~V}$ Internal Power Dissipation ${ }^{2}$......................... 300 mW Operating T emperature Range $40^{\circ} \mathrm{C}$ to +85 C Storage Temperature Range $. \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead T emperature, Soldering 60 sec $+300^{\circ} \mathrm{C}$
ESD Rating 1500 V
NOTES
${ }^{1}$ Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
${ }^{2}$ Thermal C haracteristics:
8-Pin Plastic DIP (N): $\theta_{\mathrm{JC}}=35^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JA}}=90^{\circ} \mathrm{C} / \mathrm{W}$
8 -Pin Plastic SOIC (R): $\theta_{\mathrm{JC}}=45^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JA}}=115^{\circ} \mathrm{C} / \mathrm{W}$.

PIN CONNECTIONS
8-Pin Plastic DIP (N)
8-Pin Plastic SOIC (R)

ORDERING GUIDE

Model	Temperature Range	Package Options*
AD 835AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
AD 835AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-8$

* $\mathrm{N}=$ Plastic DIP; R = Small Outline IC Plastic Package (SOIC).

Figure 3. Gain \& Phase vs. Frequency of X, Y, Z Inputs

Figure 4. Gain Flatness to 0.1 dB

Figure 5. X and Y Feedthrough vs. Frequency

Figure 6. Small Signal Pulse Response at W Output, $R_{L}=$ $150 \Omega, C_{L} \leq 5 \mathrm{pF}, X$ Channel $= \pm 0.2 \mathrm{~V}, Y$ Channel $= \pm 1.0 \mathrm{~V}$

Figure 7. Large Signal Pulse Response at W Output, $R_{L}=$ $150 \Omega, C_{L} \leq 5 \mathrm{pF}, X$ Channel $= \pm 1.0 \mathrm{~V}, Y$ Channel $= \pm 1.0 \mathrm{~V}$

Figure 8. CMRR vs. Frequency for X or Y Channel, $R_{L}=150 \Omega, C_{L} \leq 5 \mathrm{pF}$

Figure 9. PSRR vs. Frequency for $V+$ and V - Supply

Figure 10. Harmonic Distortion at $10 \mathrm{MHz} ; 10 \mathrm{dBm}$ Input to X or Y Channels, $R_{L}=150 \Omega, C_{L}=\leq 5 p F$

Figure 11. Harmonic Distortion at $50 \mathrm{MHz}, 10 \mathrm{dBm}$ Input to X or Y Channel, $R_{L}=150 \Omega, C_{L} \leq 5 \mathrm{pF}$

Figure 12. Harmonic Distortion at $100 \mathrm{MHz}, 10 \mathrm{dBm}$ Input to X or Y Channel, $R_{L}=150 \Omega, C_{L} \leq 5 p F$

Figure 13. Maximum Output Voltage Swing, $R_{L}=50 \Omega$, $C_{L} \leq 5 p F$

Figure 14. $V_{o s}$ Output Drift vs. Temperature

Figure 15. Fixed LO on Y Channel vs. RF Frequency Input to X Channel

Figure 16. Fixed IF vs. LO Frequency on Y Channel

AD835

PRODUCT DESCRIPTION

The AD 835 is a four-quadrant, voltage output, analog multiplier fabricated on an advanced, dielectrically isolated, complementary bipolar process. In its basic mode, it provides the linear product of its X and Y voltage inputs. In this mode, the $-3 d B$ output voltage bandwidth is 250 M Hz (a small signal rise time of 1 ns). Full-scale (-1 V to +1 V) rise/fall times are 2.5 ns (with the standard R_{L} of 150Ω) and the settling time to 0.1% under the same conditions is typically 20 ns .

As in earlier multipliers from Analog D evices, a unique summing feature is provided at the Z-input. As well as providing independent ground references for inputs and output, and enhanced versatility, this feature allows the AD 835 to operate with voltage gain. Its $\mathrm{X}-, \mathrm{Y}$ - and Z -input voltages are all nominally ± 1 V FS, with overrange of at least 20%. T he inputs are fully differential and at high impedance ($100 \mathrm{k} \Omega \| 2 \mathrm{pF}$) and provide a 70 dB CMRR ($\mathrm{f} \leq 1 \mathrm{MHz}$).
The low impedance output is capable of driving loads as small as 25Ω. The peak output can be as large as $\pm 2.2 \mathrm{~V}$ minimum for $R_{L}=150 \Omega$, or $\pm 2.0 \mathrm{~V}$ minimum into $R_{L}=50 \Omega$. The AD 835 has much lower noise than the AD 534 or AD 734, making it attractive in low level signal-processing applications, for example, as a wideband gain-control element or modulator.

Basic Theory

The multiplier is based on a classic form, having a translinear core, supported by three (X, Y, Z) linearized voltage-to-current converters, and the load driving output amplifier. The scaling voltage (the denominator U, in the equations below) is provided by a bandgap reference of novel design, optimized for ultralow noise. Figure 17 shows the functional block diagram.

In general terms, the AD 835 provides the function

$$
\begin{equation*}
W=\frac{(X 1-X 2)(Y 1-Y 2)}{U}+Z \tag{1}
\end{equation*}
$$

where the variables $\mathrm{W}, \mathrm{U}, \mathrm{X}, \mathrm{Y}$ and Z are all voltages. C onnected as a simple multiplier, with $X=X 1-X 2, Y=Y 1-Y 2$ and $Z=0$, and with a scale factor adjustment (see below) which sets $\mathrm{U}=1 \mathrm{~V}$, the output can be expressed as

$$
\begin{equation*}
W=X Y \tag{2}
\end{equation*}
$$

Figure 17. Functional Block Diagram

Simplified representations of this sort, where all signals are presumed to be expressed in volts, are used throughout this data sheet, to avoid the needless use of less-intuitive subscripted variables (such as $\mathrm{V}_{\mathrm{x} 1}$). We can view all variables as being normalized to 1 V . F or example, the input X can either be stated as being in the range -1 V to +1 V , or simply -1 to +1 . T he latter representation will be found to facilitate the development of new functions using the AD 835. The explicit inclusion of the denominator, U, is also less helpful, as in the case of the AD 835, if it is not an electrical input variable.

Scaling Adjustment

The basic value of U in Equation 1 is nominally 1.05 V . Figure 18, which shows the basic multiplier connections, also shows how the effective value of U can be adjusted to have any lower voltage (usually 1 V) through the use of a resistive-divider between W (Pin 5) and Z (Pin 4). U sing the general resistor values shown, we can rewrite Equation 1 as

$$
\begin{equation*}
W=\frac{X Y}{U}+k W+(1-k) Z^{\prime} \tag{3}
\end{equation*}
$$

(where Z ' is distinguished from the signal Z at Pin 4). It follows that

$$
\begin{equation*}
W=\frac{X Y}{(1-k) U}+Z^{\prime} \tag{4}
\end{equation*}
$$

In this way, we can modify the effective value of U to

$$
\begin{equation*}
U^{\prime}=(1-k) U \tag{5}
\end{equation*}
$$

without altering the scaling of the Z^{\prime} input. (This is to be expected, since the only "ground reference" for the output is through the Z^{\prime} input.)
Thus, to set U ' to 1 V , remembering that the basic value of U is 1.05 V , we need to choose R1 to have a nominal value of 20 times R2. T he values shown here allow U to be adjusted through the nominal range 0.95 V to 1.05 V , that is, R 2 provides a 5\% gain adjustment.

Figure 18. Multiplier Connections
N ote that in many applications, the exact gain of the multiplier may not be very important; in which case, this network may be omitted entirely, or R2 fixed at 100Ω.

APPLICATIONS

The AD 835 is both easy to use and versatile. The capability for adding another signal to the output at the Z input is frequently valuable. Three applications of this feature are presented here: a wideband voltage controlled amplifier, an amplitude modulator and a frequency doubler. Of course, the AD 835 may also be used as a square law detector (with its X - and Y -inputs connected in parallel) in which mode it is useful at input frequencies to well over 250 M Hz , since that is the bandwidth limitation only of the output amplifier.

Multiplier Connections

Figure 18 shows the basic connections for multiplication. The inputs will often be single sided, in which case the $X 2$ and $Y 2$ inputs will normally be grounded. N ote that by assigning Pins 7 and 2 to these (inverting) inputs, respectively, an extra measure of isolation between inputs and output is provided. The X and Y inputs may, of course, be reversed to achieve some desired overall sign with inputs of a particular polarity, or they may be driven fully differentially.
Power supply decoupling and careful board layout are always important in applying wideband circuits. The decoupling recommendations shown in Figure 18 should be followed closely. In remaining figures in this data sheet, these power supply decoupling components have been omitted for clarity, but should be used wherever optimal performance with high speed inputs is required. However, they may be omitted if the full high frequency capabilities of AD 835 are not being exploited.

A Wideband Voltage C ontrolled Amplifier

Figure 19 shows the AD 835 configured to provide a gain of nominally 0 to 12 dB . (In fact, the control range extends from well under -12 dB to about +14 dB .) R1 and R2 set the gain to be nominally $\times 4$. The attendant bandwidth reduction that comes with this increased gain can be partially offset by the addition of the peaking capacitor C1. Although this circuit shows the use of dual supplies, the AD 835 can operate from a single 9 V supply with slight revision.

Figure 19. Voltage Controlled 50 MHz Amplifier Using the AD835
The ac response of this amplifier for gains of $0 \mathrm{~dB}\left(\mathrm{~V}_{G}=\right.$ $0.25 \mathrm{~V}), 6 \mathrm{~dB}\left(\mathrm{~V}_{\mathrm{G}}=0.5 \mathrm{~V}\right)$ and $12 \mathrm{~dB}\left(\mathrm{~V}_{\mathrm{G}}=1 \mathrm{~V}\right)$ is shown in Figure 20. In this application, the resistor values have been slightly adjusted to reflect the nominal value of $\mathrm{U}=1.05 \mathrm{~V}$. The overall sign of the gain may be controlled by the sign of V_{G}.

Figure 20. AC Response of VCA

An Amplitude Modulator

Figure 21 shows a simple modulator. The carrier is applied both to the Y-input and the Z-input, while the modulating signal is applied to the X -input. For zero modulation, there is no product term, so the carrier input is simply replicated at unity gain by the voltage follower action from the Z-input. At $\mathrm{X}=1 \mathrm{~V}$, the RF output is doubled, while for $X=-1 \mathrm{~V}$, it is fully suppressed. That is, an X-input of approximately $\pm 1 \mathrm{~V}$ (actually $\pm \mathrm{U}$, or about 1.05 V) corresponds to a modulation index of 100%. Carrier and modulation frequencies can be up to 300 M Hz , somewhat beyond the nominal -3 dB bandwidth.
Of course, a suppressed carrier modulator can be implemented by omitting the feedforward to the Z-input, grounding that pin instead.

Figure 21. Simple Amplitude Modulator Using the AD835

Squaring and Frequency Doubling

Amplitude domain squaring of an input signal, E, is achieved simply by connecting the X - and Y -inputs in parallel to produce an output of E^{2} / U. The input may have either polarity, but the output in this case will always be positive. T he output polarity may be reversed by interchanging either the X or Y inputs.
When the input is a sine wave $E \sin \omega t$, a signal squarer behaves as a frequency doubler, since

$$
\begin{equation*}
\frac{(E \sin \omega t)^{2}}{U}=\frac{E^{2}}{2 U}(1-\cos 2 \omega t) \tag{6}
\end{equation*}
$$

While useful, Equation 6 shows a dc term at the output which will vary strongly with the amplitude of the input, E.

AD835

Figure 22 shows a frequency doubler which overcomes this limi－ tation and provides a relatively constant output over a moder－ ately wide frequency range，determined by the time－constant C1 and R1．The voltage applied to the X －and Y －inputs are exactly in quadrature at a frequency $f=1 / 2 \pi C 1 R 1$ and their ampli－ tudes are equal．At higher frequencies，the X －input becomes smaller while the Y－input increases in amplitude；the opposite happens at lower frequencies．The result is a double frequency output，centered on ground，whose amplitude of 1 V for a 1 V input varies by only 0.5% over a frequency range of $\pm 10 \%$ ．Be－ cause there is no＂squared＂dc component at the output，sud－ den changes in the input amplitude do not cause a＂bounce＂in the dc level．

Figure 22．Broadband＂Zero－Bounce＂Frequency Doubler This circuit is based on the identity

$$
\begin{equation*}
\cos \theta \sin \theta=\frac{1}{2} \sin 2 \theta \tag{7}
\end{equation*}
$$

At $\omega_{0}=1 / C 1 R 1$ ，the X input leads the input signal by 45°（and is attenuated by $\sqrt{2}$ ，while the Y input lags the input signal by 45° ，and is also attenuated by $\sqrt{2}$ ．Since the X and Y inputs are 90° out of phase，the response of the circuit will be
$W=\frac{1}{U} \frac{E}{\sqrt{2}}\left(\sin \omega t-45^{\circ}\right) \frac{E}{\sqrt{2}}\left(\sin \omega t+45^{\circ}\right)=\frac{E^{2}}{2 U}(\sin 2 \omega t)$
which has no dc component，R2 and R3 are included to restore the output to 1 V for an input amplitude of 1 V （the same gain adjustment as mentioned earlier）．Because the voltage across the capacitor，C 1，decreases with frequency，while that across the resistor，R1，increases，the amplitude of the output varies only slightly with frequency．In fact，it is only 0.5% below its full value（at its center frequency $\omega_{0}=1 / C 1 R 1$ ）at 90% and 110% of this frequency．

OUTLINE DIMENSIONS
Dimensions shown in inches and（mm）．

8－Pin Plastic DIP

 （N Package）

8－Pin Plastic SOIC （R Package）

