

LC²MOS Precision Quad SPST Switches

ADG431/ADG432/ADG433

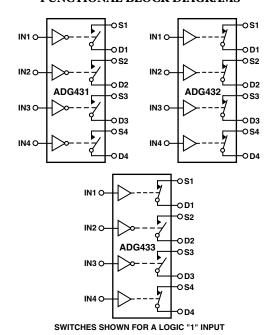
FEATURES

44 V Supply Maximum Ratings
±15 V Analog Signal Range
Low On Resistance (<24 Ω)
Ultralow Power Dissipation (3.9 μW)
Low Leakage (<0.25 nA)
Fast Switching Times
t_{ON} <165 ns
t_{OFF} <130 ns
Break-Before-Make Switching Action
TTL/CMOS Compatible
Plug-in Replacement for DG411/DG412/DG413

APPLICATIONS

Audio and Video Switching Automatic Test Equipment Precision Data Acquisition Battery Powered Systems Sample Hold Systems Communication Systems

GENERAL DESCRIPTION


The ADG431, ADG432 and ADG433 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process which provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG431, ADG432 and ADG433 contain four independent SPST switches. The ADG431 and ADG432 differ only in that the digital control logic is inverted. The ADG431 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG432. The ADG433 has two switches with digital control logic similar to that of the ADG431 while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break before make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The ADG431, ADG432 and ADG433 are fabricated on an enhanced LC²MOS process giving an increased signal range which extends fully to the supply rails.

- 2. Ultralow Power Dissipation
- 3. Low Ron
- 4. Break-Before-Make Switching
 This prevents channel shorting when the switches are configured as a multiplexer.
- 5. Single Supply Operation
 For applications where the analog signal is unipolar, the ADG431, ADG432, and ADG433 can be operated from a single rail power supply. The parts are fully specified with a single 12 V power supply and will remain functional with single supplies as low as 5 V.

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG431/ADG432/ADG433—SPECIFICATIONS¹

Dual Supply ($V_{DD}=+15~V~\pm~10\%,~V_{SS}=-15~V~\pm~10\%,~V_L=+5~V~\pm~10\%,~GND=0~V,~unless~otherwise~noted.$)

	B Version			
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{DD} to V_{SS}	V	
R_{ON}	17		Ω typ	$V_D = \pm 8.5 \text{ V}, I_S = -10 \text{ mA};$
	24	26	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
R_{ON} vs. V_D (V_S)	15		% typ	
R _{ON} Drift	0.5		%/°C typ	
R _{ON} Match	5		% typ	$V_{\rm D} = 0 \text{ V}, I_{\rm S} = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{\rm DD}$ = +16.5 V, $V_{\rm SS}$ = -16.5 V
Source OFF Leakage I _S (OFF)	±0.05		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
	±0.25	±2	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.05		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
	±0.25	±2	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.1		nA typ	$V_D = V_S = \pm 15.5 \text{ V};$
	±0.35	±3	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.02	μA max	
C _{IN} Digital Input Capacitance	9		pF typ	
DYNAMIC CHARACTERISTICS ¹				$V_{\rm DD}$ = +15 V, $V_{\rm SS}$ = -15 V
t_{ON}	90		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		165	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
t_{OFF}	60		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	25	130	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	25		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(ADG433 Only)				$V_{S1} = V_{S2} = +10 \text{ V};$
Charge Injection	5		pC typ	Test Circuit 5 $V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 10 \text{ nF};$
Charge injection			pC typ	Test Circuit 6
OFF Isolation	68		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			db typ	Test Circuit 7
Channel-to-Channel Crosstalk	85		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
			71	Test Circuit 8
C_{S} (OFF)	9		pF typ	f = 1 MHz
C_D (OFF)	9		pF typ	f = 1 MHz
$C_D, C_S (ON)$	35		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
10 11 20 12 20 21 22 12 12				Digital Inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	
	0.1	0.2	μA max	
${ m I}_{ m SS}$	0.0001		μA typ	
	0.1	0.2	μA max	
${ m I_L}$	0.0001		μA typ	
	0.1	0.2	μA max	
Power Dissipation	1	7.7	μW max	

NOTES

Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG431/ADG432/ADG433

Single Supply (V_DD = 12 V \pm 10%, V_SS = 0 V, V_L = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

	BV	ersion		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH	1 20 0			2 000 002002000000000000000000000000000
Analog Signal Range		0 V to V _{DD}	V	
	28	O V LO V DD	ν Ω typ	$0 < V_D < 8.5 \text{ V}, I_S = -10 \text{ mA};$
R_{ON}	42	45	Ω max	$V_{DD} = 10.8 \text{ V}$
R_{ON} vs. V_D (V_S)	20	4)	% typ	V _{DD} - 10.6 V
R _{ON} Vs. V _D (V _S) R _{ON} Drift	0.5		% typ %/°C typ	
R _{ON} Match	5		% typ	$V_D = 0 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS			, , -JF	*
	1004		A	$V_{DD} = 13.2 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.04	1.0	nA typ	$V_D = 12.2/1 \text{ V}, V_S = 1/12.2 \text{ V};$
Davis OFF Lashard (OFF)	±0.25	±2	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.04	1.0	nA typ	$V_D = 12.2/1 \text{ V}, V_S = 1/12.2 \text{ V};$
Channel ON Lashers I. J. (ON)	±0.25	±2	nA max	Test Circuit 2
Channel ON Leakage I _D , Is (ON)	±0.01	1.2	nA typ	$V_D = V_S = 12.2 \text{ V/1 V};$
	±0.3	±3	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.01	μA max	
C _{IN} Digital Input Capacitance	9		pF typ	
DYNAMIC CHARACTERISTICS ¹				$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$
t_{ON}	165		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		240	ns max	$V_S = 8 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	60		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		115	ns max	$V_S = 8 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	25		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(ADG433 Only)				$V_{S1} = V_{S2} = 10 \text{ V}$; Test Circuit 5
Charge Injection	25		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 10 \text{ nF};$
,				Test Circuit 6
OFF Isolation	68		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$
				Test Circuit 7
Channel-to-Channel Crosstalk	85		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$
				Test Circuit 8
C_S (OFF)	9		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	9		pF typ	f = 1 MHz
$C_D, C_S (ON)$	35		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 13.2 V
				Digital Inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	
<u>-</u> עע	0.03	0.1	μA max	
${ m I_L}$	0.0001	V.2	μA typ	
- L	0.03	0.1	μA max	$V_{L} = 5.25 \text{ V}$
Power Dissipation	0.03	1.9	μW max	
		1.7	µ vv IIIax	

NOTES

Specifications subject to change without notice.

Truth Table (ADG431/ADG432)

ADG431 In	ADG432 In	Switch Condition
0	1	ON
1	0	OFF

Truth Table (ADG433)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

REV. C -3-

¹Guaranteed by design, not subject to production test.

ADG431/ADG432/ADG433

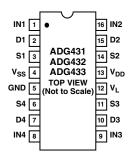
ABSOLUTE MAXIMUM RATINGS

$(T_A = 25^{\circ}C \text{ unless otherwise noted.})$
V_{DD} to V_{SS}
V_{DD} to GND
V_{SS} to GND +0.3 V to –25 V
V_L to GND
Analog, Digital Inputs ² $V_{SS} - 2 V$ to $V_{DD} + 2 V$ or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature

Plastic Package, Power Dissipation	470 mW
θ_{JA} , Thermal Impedance	117°C/W
Lead Temperature, Soldering (10 sec)	260°C
SOIC Package, Power Dissipation	600 mW
θ_{JA} , Thermal Impedance	. 77°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG431/ADG432/ADG433 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

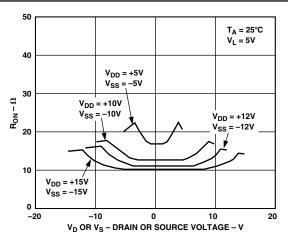
PIN CONFIGURATION (DIP/SOIC)

ORDERING GUIDE

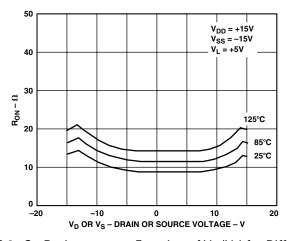
Model	Temperature Range	Package Option ¹
ADG431BN	-40°C to +85°C	N-16
ADG431BR	−40°C to +85°C	R-16A
ADG431ABR	−40°C to +85°C	R-16A ²
ADG432BN	–40°C to +85°C	N-16
ADG432BR	–40°C to +85°C	R-16A
ADG432ABR	−40°C to +85°C	R-16A ²
ADG433BN	−40°C to +85°C	N-16
ADG433BR	−40°C to +85°C	R-16A
ADG433ABR	−40°C to +85°C	R-16A ²

NOTES

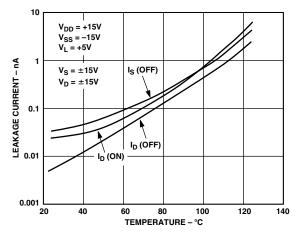
¹N = Plastic DIP; R = 0.15" Small Outline IC (SOIC).

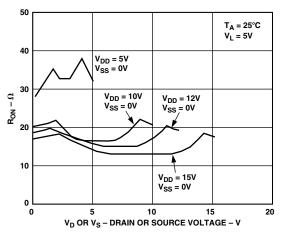

TERMINOLOGY

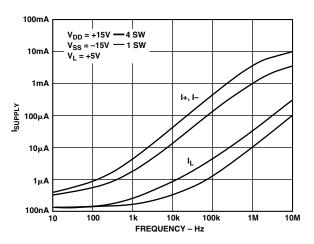
positive power supply potential.	C_S (OFF)	"OFF" switch source capacitance.
negative power supply potential in dual	C_D (OFF)	"OFF" switch drain capacitance.
es. In single supply applications, it may be	C_D , C_S (ON)	"ON" switch capacitance.
cted to GND.	C_{IN}	Input Capacitance to ground of a digital input.
power supply (5 V).	t _{ON}	Delay between applying the digital control input
d (0 V) reference.		and the output switching on.
e terminal. May be an input or output.	t _{OFF}	Delay between applying the digital control input
terminal. May be an input or output.		and the output switching off.
control input.	t_{D}	"OFF" time or "ON" time measured between the
resistance between D and S.		90% points of both switches, when switching
riation in R _{ON} due to a change in the ana-		from one address state to another.
ut voltage with a constant load current.	Crosstalk	A measure of unwanted signal which is coupled
e in R _{ON} vs. temperature.		through from one channel to another as a result
ence between the R _{ON} of any two switches.		of parasitic capacitance.
e leakage current with the switch "OFF."	Off Isolation	A measure of unwanted signal coupling through an
leakage current with the switch "OFF."		"OFF" switch.
el leakage current with the switch "ON."	Charge	A measure of the glitch impulse transferred from the
g voltage on terminals D, S.	Injection	digital input to the analog output during switching.
	regative power supply potential in dual as. In single supply applications, it may be sted to GND. The sower supply (5 V). The down of the	regative power supply potential in dual C_D (OFF) are in single supply applications, it may be setted to GND. C_{IN} to the detection of the dependence

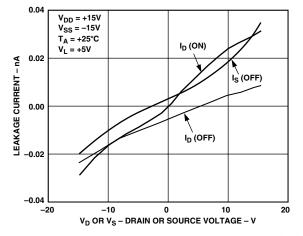

–4– REV. C

 $^{^2\}mathrm{Trench}$ isolated, latch-up proof parts. See Trench Isolation section.

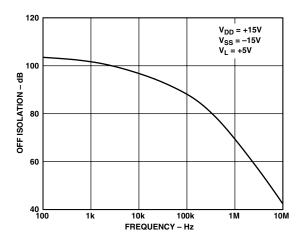

Typical Performance Characteristics—ADG431/ADG432/ADG433

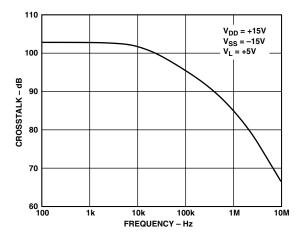

TPC 1. On Resistance as a Function of V_D (V_S) Dual Supplies


TPC 2. On Resistance as a Function of $V_D \, (V_S)$ for Different Temperatures


TPC 3. Leakage Currents as a Function of Temperature

TPC 4. On Resistance as a Function of V_D (V_S) Single Supply


TPC 5. Supply Current vs. Input Switching Frequency


TPC 6. Leakage Currents as a Function of V_D (V_S)

REV. C –5–

ADG431/ADG432/ADG433

TPC 7. Off Isolation vs. Frequency

TPC 8. Crosstalk vs. Frequency

TRENCH ISOLATION

In the ADG431A, ADG432A and ADG433A, an insulating oxide layer (trench) is placed between the NMOS and PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, the result being a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors from a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch up. With trench isolation, this diode is removed, the result being a latch-up proof switch.

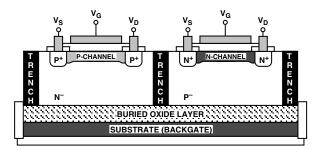


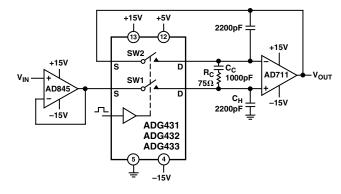
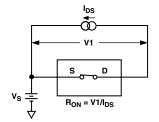
Figure 1. Trench Isolation

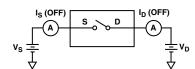
APPLICATION

Figure 2 illustrates a precise, fast sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output $V_{\rm OUT}$ follows the input signal $V_{\rm IN}$. In the hold mode, SW1 is opened and the signal is held by the hold capacitor $C_{\rm H}$.

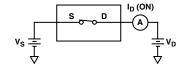
Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG431/ADG432/ ADG433 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30 μ V/ μ s.

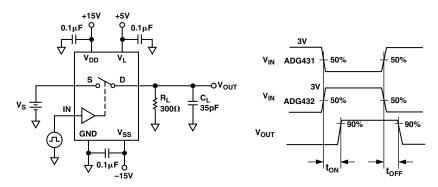
A second switch SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD711 which will minimize charge injection effects. Pedestal error is also reduced by the compensation network $R_{\rm C}$ and $C_{\rm C}$. This compensation network also reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 10 V input range. Both the acquisition and settling times are 850 ns.

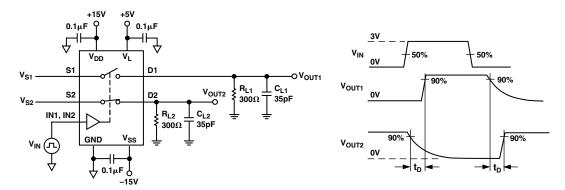



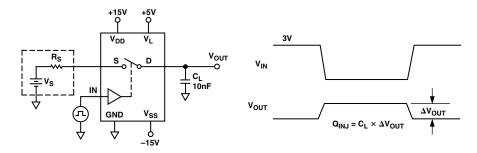

Figure 2. Fast, Accurate Sample-and-Hold

–6– REV. C


Test Circuits

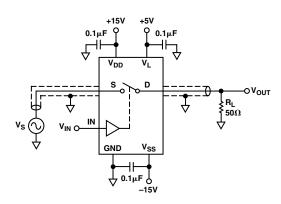

Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage

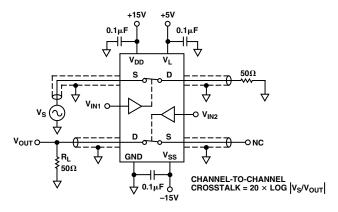

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay

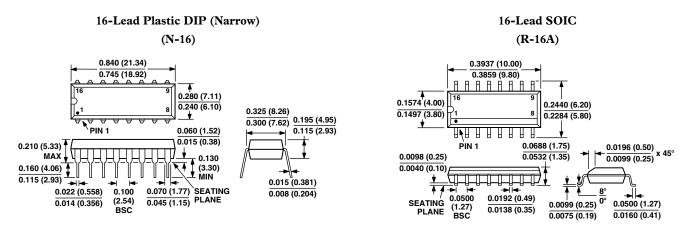


Test Circuit 6. Charge Injection


REV. C -7-

REV. C

ADG431/ADG432/ADG433


Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

ADG431/ADG432/ADG433—Revision History

Location	Page
Data Sheet changed from REV. B to REV. C.	
Changes to Specifications Table (Dual Supply)	2
Changes to Specifications Table (Single Supply)	3
Changes to Absolute Maximum Ratings	4
Changes to Ordering Guide	4
16-Lead Cerdip deleted from Outline Dimensions	8

-8-