

LC^2MOS 5 Ω R_{ON} SPST Switches

ADG451/ADG452/ADG453

FEATURES

Low On Resistance (4 Ω)
On Resistance Flatness 0.2 Ω 44 V Supply Maximum Ratings ± 15 V Analog Signal Range
Fully Specified @ ± 5 V, ± 12 V, ± 15 V
Ultralow Power Dissipation (18 μ W)
ESD 2 kV
Continuous Current 100 mA
Fast Switching Times t_{ON} 70 ns t_{OFF} 60 ns
TTL/CMOS Compatible
Pin Compatible Upgrade for ADG411/ADG412/ADG413
and ADG431/ADG432/ADG433

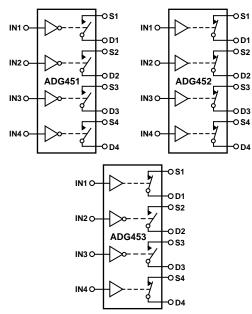
APPLICATIONS
Relay Replacement
Audio and Video Switching
Automatic Test Equipment
Precision Data Acquisition
Battery Powered Systems
Sample Hold Systems
Communication Systems
PBX, PABX Systems

GENERAL DESCRIPTION

Avionics

The ADG451, ADG452 and ADG453 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.


The ADG451, ADG452 and ADG453 contain four independent single-pole/single-throw (SPST) switches. The ADG451 and ADG452 differ only in that the digital control logic is inverted. The ADG451 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG452. The ADG453 has two switches with digital control logic similar to that of the ADG451 while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

The ADG453 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- 1. Low R_{ON} (5 Ω max)
- 2. Ultralow Power Dissipation
- Extended Signal Range
 The ADG451, ADG452 and ADG453 are fabricated on an enhanced LC²MOS process giving an increased signal range that fully extends to the supply rails.
- 4. Break-Before-Make Switching
 This prevents channel shorting when the switches are configured as a multiplexer. (ADG453 only.)
- 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG451, ADG452 and ADG453 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5.0 V.
- 6. Dual Supply Operation For applications where the analog signal is bipolar, the ADG451, ADG452 and ADG453 can be operated from a dual power supply ranging from $\pm 4.5~V$ to $\pm 20~V$.

ADG451/ADG452/ADG453-SPECIFICATIONS¹

Dual Supply $(V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}, V_L = +5 \text{ V}, \text{GND} = 0 \text{ V}. \text{ All specifications } T_{MIN} \text{ to } T_{MAX} \text{ unless otherwise noted.})$

	B Version			
Parameter	+25°C	T _{MIN} to T _{MAX}	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On-Resistance (R _{ON})	4.0	55 55	Ω typ	$V_D = -10 \text{ V to } +10 \text{ V}, I_S = -10 \text{ mA}$
COLV	5	7	Ω max	
On-Resistance Match Between	0.1		Ω typ	$V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
Channels (ΔR_{ON})	0.5	0.5	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	0.2		Ω typ	$V_D = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}, I_S = -10 \text{ mA}$
. 12.11(0.17)	0.5	0.5	Ω max	
LEAKAGE CURRENTS ²				
Source OFF Leakage I _S (OFF)	± 0.02		nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V};$
	± 0.5	± 2.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.02		nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V};$
	± 0.5	± 2.5	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.04		nA typ	$V_{\rm D} = V_{\rm S} = \pm 10 \text{ V};$
0 · ·	±1	±5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH} , All Others = 2.4 V
		±0.5	μA max	or 0.8 V Respectively
DYNAMIC CHARACTERISTICS ³				
t_{ON}	70		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	180	220	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	60		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	140	180	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	15		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(ADG453 Only)	5	5	ns min	$V_{S1} = V_{S2} = +10 \text{ V};$ Test Circuit 5
Charge Injection	20		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF};$
Charge injection	30		pC typ pC max	Test Circuit 6
OFF Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Of a Isolation	03		ир тур	Test Circuit 7
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz;$ Test Circuit 8
C _s (OFF)	15		pF typ	f = 1 MHz
$C_{S}(OFF)$ $C_{D}(OFF)$	15		pF typ	f = 1 MHz f = 1 MHz
$C_{\rm D}$ (OFF) $C_{\rm D}$, $C_{\rm S}$ (ON)	100		рг typ pF typ	f = 1 MHz f = 1 MHz
POWER REQUIREMENTS			r √r	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
OWER RESCRIPTION 15				Digital Inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	
	0.5	5	μA max	
I_{SS}	0.0001		μA typ	
	0.5	5	μA max	
I_{L}	0.0001		μA typ	
- 2	0.5	5	μA max	
${ m I_{GND}}^3$	0.0001		μA typ	
	0.5	5	μA max	

 $^{^{1}}$ Temperature range is as follows: B Version: –40 °C to +85 °C. 2 T $_{MAX}$ = +70 °C

³Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Single Supply $(V_{DD} = +12 \text{ V}, V_{SS} = 0 \text{ V}, V_L = +5 \text{ V}, \text{GND} = 0 \text{ V}. \text{ All specifications } T_{MIN} \text{ to } T_{MAX} \text{ unless otherwise noted.})$

	B Version			
Parameter	+25°C	$\mathbf{T_{MIN}}$ to $\mathbf{T_{MAX}}$	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On-Resistance (R _{ON})	6		Ω typ	$V_D = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
. 010	8	10	Ω max	
On-Resistance Match Between	0.1		Ω typ	$V_D = 10 \text{ V}, I_S = -10 \text{ mA}$
Channels (ΔR_{ON})	0.5	0.5	Ω max	
On-Resistance Flatness $(R_{FLAT(ON)})$	1.0	1.0	Ω typ	$V_D = 0 \text{ V}, +5 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS ^{2, 3}			31	
	±0.09		n A trun	W OW 10 W W OW 10 W
Source OFF Leakage I _S (OFF)	±0.02	10.5	nA typ	$V_D = 0 \text{ V}, 10 \text{ V}, V_S = 0 \text{ V}, 10 \text{ V};$
D : OFFI 1 . I (OFF)	±0.5	± 2.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.02		nA typ	$V_D = 0 \text{ V}, 10 \text{ V}, V_S = 0 \text{ V}, 10 \text{ V};$
GI 10177 1 7 7 (017)	±0.5	± 2.5	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.04		nA typ	$V_D = V_S = 0 \text{ V}, 10 \text{ V};$
	±1	±5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
TINE OF TINH	0.000	± 0.5	μA max	VIN — VINE OF VINH
DYNAMIC CHARACTERISTICS ⁴			•	
	100		ng trm	D 200 O C 25 nE.
t_{ON}	100	900	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
	220	260	ns max	$V_S = +8 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	80	000	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
D 1 D 0 141 FF D 1	160	200	ns max	$V_S = +8 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	15		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(ADG453 Only)	10	10	ns min	$V_{S1} = V_{S2} = +8 \text{ V};$
				Test Circuit 5
Charge Injection	10		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF};$
				Test Circuit 6
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
				Test Circuit 8
C_{S} (OFF)	15		pF typ	f = 1 MHz
C_D (OFF)	15		pF typ	f = 1 MHz
$C_D, C_S (ON)$	100		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +13.2 \text{ V}$
O WELV REQUIREMENTS				Digital Inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	Digital Inpats – 0 v of 0 v
TDD	0.0001	5		
ī		5	μA max	
I_L	0.0001	r	μA typ	
т 4	0.5	5	μA max	$V_L = +5.5 \text{ V}$
${ m I_{GND}}^4$	0.0001	~	μA typ	
	0.5	5	μA max	$V_L = +5.5 \text{ V}$

REV. A -3-

¹Temperature range is as follows: B Version: -40° C to $+85^{\circ}$ C. 2 T_{MAX} = $+70^{\circ}$ C. 3 Tested with dual supplies. 4 Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG451/ADG452/ADG453-SPECIFICATIONS¹

	B Ve	ersion		
Parameter	+25°C	$egin{aligned} \mathbf{T_{MIN}} \ \mathbf{to} \ \mathbf{T_{MAX}} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On-Resistance (R _{ON})	7		Ω typ	$V_D = -3.5 \text{ V to } +3.5 \text{ V}, I_S = -10 \text{ mA}$
	12	15	Ω max	
On-Resistance Match Between	0.3		Ω typ	$V_D = 3.5 \text{ V}, I_S = -10 \text{ mA}$
Channels (ΔR _{ON})	0.5	0.5	Ω max	
LEAKAGE CURRENTS ^{2, 3}				
Source OFF Leakage I _S (OFF)	±0.02		nA typ	$V_D = \pm 4.5, V_S = \pm 4.5;$
, and a second of the second o	±0.5	± 2.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.02		nA typ	$V_D = 0 \text{ V}, 5 \text{ V}, V_S = 0 \text{ V}, 5 \text{ V};$
0 - 1	± 0.5	± 2.5	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.04		nA typ	$V_D = V_S = 0 \text{ V}, 5 \text{ V};$
	±1	± 5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.0	V IIIux	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
-IIVLIIVII		± 0.5	μA max	THE STATE
DYNAMIC CHARACTERISTICS ⁴				
	160		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
$t_{ m ON}$	220	300	ns max	$V_S = 3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	60	300	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
Off	140	180	ns max	$V_S = 3 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	50	100	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
(ADG453 Only)	5	5	ns min	$V_{S1} = V_{S2} = 3 V;$
, , , , , , , , , , , , , , , , , , , ,				Test Circuit 5
Charge Injection	10		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF};$
Ç Ç				Test Circuit 6
OFF Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 7
Channel-to-Channel Crosstalk	-76		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
G (0.77)	1.2		_	Test Circuit 8
$C_{\rm S}$ (OFF)	15		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	15		pF typ	f = 1 MHz
C_D , C_S (ON)	100		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{\mathrm{DD}} = +5.5 \mathrm{\ V}$
				Digital Inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	
-	0.5	5	μA max	
${ m I}_{ m SS}$	0.0001	~	μA typ	
T	0.5	5	μA max	
I_L	0.0001	۳	μA typ	N .FFN
т 4	0.5	5	μA max	$V_L = +5.5 \text{ V}$
${ m I_{GND}}^4$	0.0001	Ę.	μA typ	V - 155V
	0.5	5	μA max	$V_{L} = +5.5 \text{ V}$

NOTES

 $^{^{1}}$ Temperature range is as follows: B Version: -40 $^{\circ}$ C to +85 $^{\circ}$ C.

 $^{^{2}}T_{MAX} = +70^{\circ}C.$ $^{3}Tested$ with dual supplies.

⁴Guaranteed by design, not subject to production test. Specifications subject to change without notice.

Truth Table (ADG451/ADG452)

ADG451 In	ADG452 In	Switch Condition
0	1	ON
1	0	OFF

Truth Table (ADG453)

Logic	Switch 1, 4	Switch 2, 3	
0	OFF	ON	
1	ON	OFF	

PIN CONFIGURATION (DIP/SOIC)

IN1 1 2 S1 3 V _{SS} 4 GND 5 S4 6 D4 7	ADG451 ADG452 ADG453 TOP VIEW (Not to Scale)	16 IN2 15 D2 14 S2 13 V _{DD} 12 V _L 11 S3 10 D3
D4 7		10 D3
IN4 8		9 IN3

ORDERING GUIDE

Model	Temperature Range	Package Options*
ADG451BN	-40°C to +85°C	N-16
ADG451BR	−40°C to +85°C	R-16A
ADG452BN	−40°C to +85°C	N-16
ADG452BR	−40°C to +85°C	R-16A
ADG453BN	−40°C to +85°C	N-16
ADG453BR	-40°C to +85°C	R-16A

^{*}N = Plastic DIP; R = Small Outline IC (SOIC).

ABSOLUTE MAXIMUM RATINGS1

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to V_{SS} +44 V
V_{DD} to GND $$
V_{SS} to GND +0.3 V to -25 V
V_L to GND0.3 V to V_{DD} + 0.3 V
Analog, Digital Inputs ² V_{SS} –2 V to V_{DD} +2 V or
30 mA, Whichever Occurs First
Continuous Current, S or D 100 mA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature +150°C
Plastic Package, Power Dissipation 470 mW
θ_{JA} Thermal Impedance
Lead Temperature, Soldering (10 sec) +260°C

SOIC Package, Power Dissipation	. 600 mW
θ_{JA} Thermal Impedance	. 77°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	. +215°C
Infrared (15 sec)	. +220°C
ESD	2 kV

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG451/ADG452/ADG453 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. A -5-

TERMINOLOGY

$\overline{V_{DD}}$	Most positive power supply potential.	$V_D(V_S)$	Analog voltage on terminals D, S.
V_{SS}	Most negative power supply potential in dual		"OFF" switch source capacitance.
	supplies. In single supply applications, it may be	C_D (OFF)	"OFF" switch drain capacitance.
17	connected to GND.	C_D , C_S (ON)	"ON" switch capacitance.
V_{L}	Logic power supply (+5 V).	t _{ON}	Delay between applying the digital control input
GND	Ground (0 V) reference.	ON	and the output switching on. See Test Circuit 4.
S	Source terminal. May be an input or output.	$t_{ m OFF}$	Delay between applying the digital control input
D	Drain terminal. May be an input or output.		and the output switching off.
IN	Logic control input.	$t_{\rm D}$	"OFF" time or "ON" time measured between
R_{ON}	Ohmic resistance between D and S.		the 90% points of both switches, when switching from one address state to another. See Test
ΔR_{ON}	On resistance match between any two channels		Circuit 5.
	i.e., R _{ON} max – R _{ON} min.	Crosstalk	A measure of unwanted signal coupled through
$R_{FLAT(ON)} \\$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as	Crosstan	from one channel to another as a result of parasitic capacitance.
	measured over the specified analog signal range.	Off Isolation	A measure of unwanted signal coupling through
I _S (OFF)	Source leakage current with the switch "OFF."		an "OFF" switch.
I_D (OFF)	Drain leakage current with the switch "OFF."	Charge	A measure of the glitch impulse transferred
I_D , I_S (ON)	(ON) Channel leakage current with the switch "ON."		from the digital input to the analog output during switching.

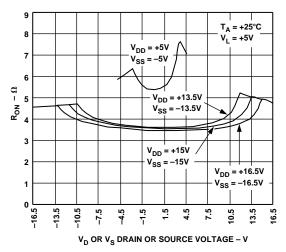


Figure 1. On Resistance as a Function of V_D (V_S) for Various Dual Supplies

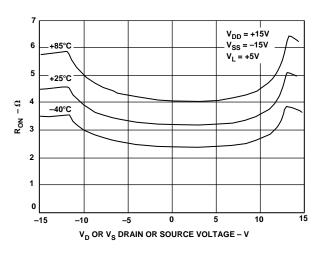


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures with Dual Supplies

-6- REV. A

Typical Performance Characteristics-ADG451/ADG452/ADG453

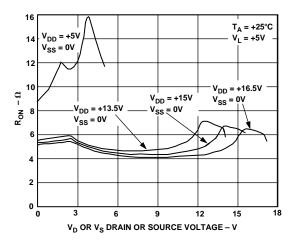


Figure 3. On Resistance as a Function of V_D (V_S) for Various Single Supplies

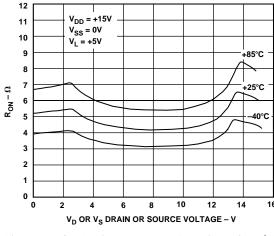


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures with Single Supplies

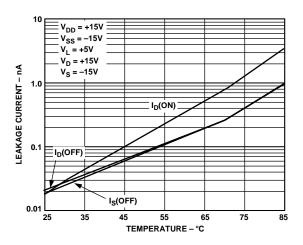


Figure 4. Leakage Currents as a Function of Temperature

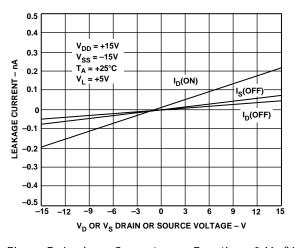


Figure 7. Leakage Currents as a Function of V_D (V_S)

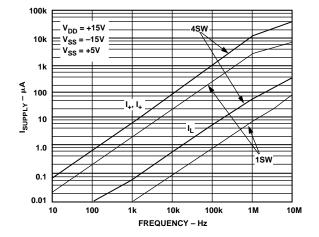


Figure 5. Supply Current vs. Input Switching Frequency

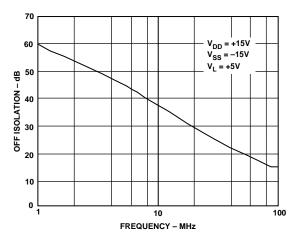


Figure 8. Off Isolation vs. Frequency

REV. A -7-

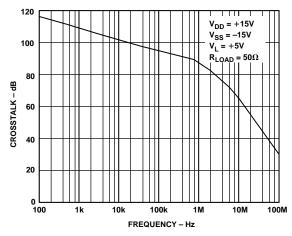


Figure 9. Crosstalk vs. Frequency

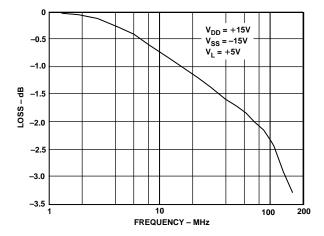
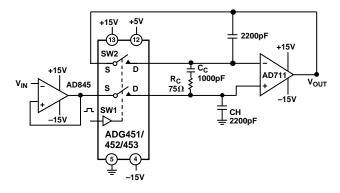
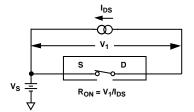


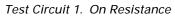
Figure 10. Frequency Response with Switch On

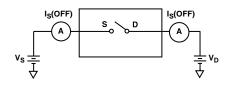
APPLICATION

Figure 11 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output $V_{\rm OUT}$ follows the input signal $V_{\rm IN}$. In the hold mode, SW1 is opened and the signal is held by the hold capacitor $C_{\rm H}$.

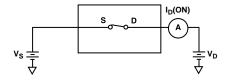


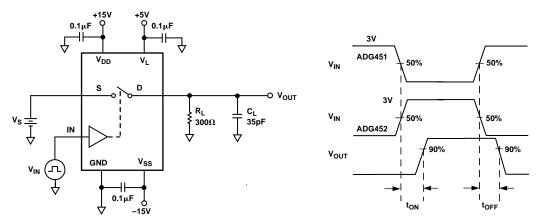

Figure 11. Fast, Accurate Sample-and-Hold Circuit

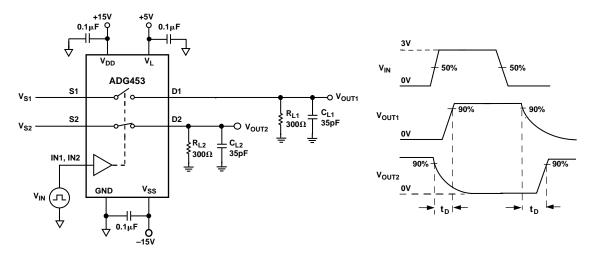

Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG451/ADG452/ADG453 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30 $\mu\text{V}/\mu\text{s}.$


A second switch, SW2, that operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD711, which will minimize charge injection effects. Pedestal error is also reduced by the compensation network $R_{\rm C}$ and $C_{\rm C}.$ This compensation network reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 10 V input range. Both the acquisition and settling times are 850 ns.

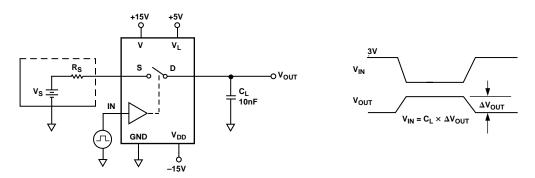
-8- REV. A


Test Circuits

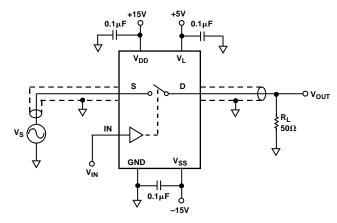



Test Circuit 2. Off Leakage

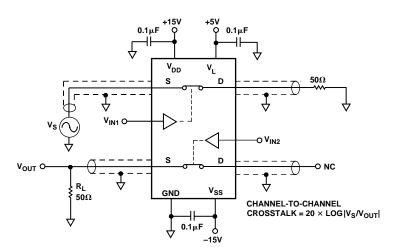
Test Circuit 3. On Leakage



Test Circuit 4. Switching Times

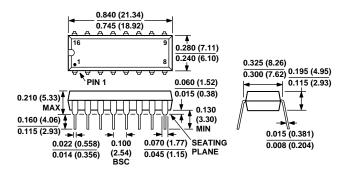


Test Circuit 5. Break-Before-Make Time Delay

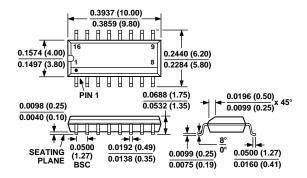

REV. A _9_

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation


Test Circuit 8. Channel-to-Channel Crosstalk

-10- REV. A


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Plastic DIP (N-16)

16-Lead SOIC (R-16A)

REV. A -11-