FEATURES

250 MHz Operation
Driver/Comparator and Active Load Included
On-Chip Schottky Diode Bridge
52-Lead LOFP Package with Built-In Heat Sink
APPLICATIONS
Automatic Test Equipment
Semiconductor Test Systems
Board Test Systems
Instrumentation and Characterization Equipment

PRODUCT DESCRIPTION

The AD53509 is a single chip that performs the pin electronics functions of driver, comparator and active load in ATE VLSI and memory testers. In addition, a Schottky diode bridge for the active load and a VCOM buffer are included internally.
The driver is a proprietary design that features three active states: Data High Mode, Data Low Mode and Term Mode as well as an Inhibit State. This facilitates the implementation of high speed active termination. The output voltage range is -2 V to +7 V to accommodate a wide variety of test devices. The output leakage is typically less than 250 nA over the entire signal range.
The dual comparator, with an input range equal to the driver output range, features built-in latches and ECL-compatible outputs. The outputs are capable of driving 50Ω signal lines terminated to -2 V . Signal tracking capability is upwards of $5 \mathrm{~V} / \mathrm{ns}$.

The active load can be set for up to 40 mA load current with less than a $10 \mu \mathrm{~A}$ linearity error through the entire set range. $\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$ and the buffered VCOM are independently adjustable. On-board Schottky diodes provide high speed switching and low capacitance.
Also included on the chip is an on-board temperature sensor whose purpose is to give an indication of the surface temperature of the DCL. This information can be used to measure θ_{JC} and θ_{JA} or flag an alarm if proper cooling is lost. Output from the sensor is a current sink that is proportional to absolute temperature. The gain is trimmed to a nominal value of $1.0 \mu \mathrm{~A} / \mathrm{K}$. As an example, the output current can be sensed by using a $10 \mathrm{k} \Omega$ resistor connected from 10 V to the THERM (IOUT) pin. A voltage drop across the resistor will be developed that equals: $10 \mathrm{~K} \times 1 \mu \mathrm{~A} / \mathrm{K}=10 \mathrm{mV} / \mathrm{K}=2.98 \mathrm{~V}$ at room temperature.

REV. A

[^0]
FUNCTIONAL BLOCK DIAGRAM

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

DRIVER SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=11 \mathrm{~V} \pm 3 \%,-\mathrm{V}_{\mathrm{S}}=-6 \mathrm{~V}= \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$.)

Parameter	Min	Typ	Max	Unit	Test Conditions
DIFFERENTIAL INPUT CHARACTERISTICS (DATA to $\overline{\text { DATA }}$, IOD to $\overline{\text { IOD }}$, RLD to $\overline{\text { RLD }}$) Input Voltage Differential Input Range Bias Current	-2 -250		$\begin{aligned} & +3 \\ & 2 \\ & +250 \end{aligned}$	V V $\mu \mathrm{A}$	All Digital Inputs Within a 2 V Range $\mathrm{V}_{\mathrm{IN}}=-2 \mathrm{~V},+3 \mathrm{~V}$
REFERENCE INPUTS Bias Currents	-50		+50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{T}}=5 \mathrm{~V}$
OUTPUT CHARACTERISTICS Logic High Range Logic Low Range Amplitude (V_{H} and V_{L}) Absolute Accuracy V_{H} Offset V_{H} Gain + Linearity Error V_{L} Offset V_{L} Gain + Linearity Error Offset TC Output Resistance $\mathrm{V}_{\mathrm{H}}=-2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{H}}=+7 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}=-2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}=+6 \mathrm{~V}$ $\mathrm{V}_{\mathrm{H}}=+3 \mathrm{~V}$ Dynamic Current Limit Static Current Limit	$\begin{aligned} & -2 \\ & -2 \\ & 0.1 \\ & \\ & -50 \\ & 0.3-5 \\ & -50 \\ & -0.3-5 \\ & \\ & \\ & 44 \\ & 44 \\ & 44 \\ & 44 \\ & \\ & -85 \end{aligned}$	0.5 46 46 46 46 46 >100	$\begin{aligned} & +7 \\ & +6 \\ & 9 \\ & +50 \\ & +0.3+5 \\ & +50 \\ & +0.3+5 \\ & \\ & 48 \\ & 48 \\ & 48 \\ & 48 \\ & +85 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \% \text { of } \mathrm{V}_{\mathrm{H}}+\mathrm{mV} \\ & \mathrm{mV} \\ & \% \text { of } \mathrm{V}_{\mathrm{L}}+\mathrm{mV} \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \\ & \Omega \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { DATA }=\mathrm{H}, \mathrm{~V}_{\mathrm{H}}=-2 \mathrm{~V} \text { to }+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { DATA }=\mathrm{L}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V} \text { to }+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { DATA }=\mathrm{H}, \mathrm{~V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-1 \mathrm{~V} \\ & \text { DATA }=\mathrm{H}, \mathrm{~V}_{\mathrm{H}}=-1 \mathrm{~V} \text { to }+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V} \\ & \text { DATA }=\mathrm{L}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=3 \mathrm{~V} \\ & \text { DATA }=\mathrm{L}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V} \text { to }+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-1 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{H}} \mathrm{Offset}\right) \\ & \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=3 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{L}} \text { Offset }\right) \\ & \mathrm{V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,+1,+30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,-1,-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{H}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,1,30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{H}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,-1,-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-30 \mathrm{~mA}(\mathrm{Trim} \mathrm{Point}) \\ & \mathrm{C}_{\mathrm{BYP}}=39 \mathrm{nF}, \mathrm{~V}_{\mathrm{H}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { Output to }-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { DATA }=\mathrm{H} \text { and Output to } 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \text { DATA }=\mathrm{L} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\text {TERM }} \\ & \text { Voltage Range } \\ & \text { V }_{\text {TERM }} \text { Offset } \\ & \mathrm{V}_{\text {TERM }} \text { Gain + Linearity Error } \\ & \text { Offset TC } \\ & \text { Output Resistance } \end{aligned}$	$\begin{array}{\|l} -2 \\ -50 \\ -0.3+10 \end{array}$ 44	$\begin{aligned} & 0.5 \\ & 46 \end{aligned}$	$\begin{aligned} & +7 \\ & +50 \\ & +0.3+10 \\ & 49 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \\ & \% \text { of } \mathrm{V}_{\mathrm{SET}}+\mathrm{mV} \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$	$\begin{aligned} & \text { TERM MODE, } \mathrm{V}_{\mathrm{T}}=-2 \mathrm{~V} \text { to }+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V} \\ & \text { TERM MODE, } \mathrm{V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V} \\ & \text { TERM MODE, } \mathrm{V}_{\mathrm{T}}=-2 \mathrm{~V} \text { to }+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=+30 \mathrm{~mA},+1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{T}}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=-30 \mathrm{~mA},-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{T}}=+7.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}= \pm 30 \mathrm{~mA}, \pm 1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \end{aligned}$
DYNAMIC PERFORMANCE, $\left(V_{H}\right.$ AND $\left.V_{L}\right)$ Propagation Delay Time Propagation Delay TC Delay Matching, Edge to Edge		$\begin{aligned} & 1.5 \\ & 2 \\ & <100 \end{aligned}$		ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ ps	Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+400 \mathrm{mV}, \mathrm{V}_{\mathrm{L}}=-400 \mathrm{mV}$, $\mathrm{V}_{\mathrm{T}}=0 \mathrm{~V}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+400 \mathrm{mV}, \mathrm{V}_{\mathrm{L}}=-400 \mathrm{mV}$, $\mathrm{V}_{\mathrm{T}}=0 \mathrm{~V}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+400 \mathrm{mV}, \mathrm{V}_{\mathrm{L}}=-400 \mathrm{mV}$, $\mathrm{V}_{\mathrm{T}}=0 \mathrm{~V}$
Rise and Fall Times 1 V Swing 3 V Swing 5 V Swing 9 V Swing		$\begin{aligned} & 0.42 \\ & 0.75 \\ & 1.65 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Measured $20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$ Measured $20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$ Measured $10 \%-90 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$ Measured $10 \%-90 \%, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$
Rise and Fall Time Temperature Coefficient 1 V Swing 3 V Swing 5 V Swing Overshoot and Preshoot		$\begin{aligned} & \pm 1 \\ & \pm 2 \\ & \pm 4 \\ & <3+50 \end{aligned}$		$\begin{aligned} & \mathrm{ps} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ps} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ps} /{ }^{\circ} \mathrm{C} \\ & \% \text { of Step }+\mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Measured } 20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1 \mathrm{~V} \\ & \text { Measured } 20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V} \\ & \text { Measured } 10 \%-90 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=-0.1 \mathrm{~V}, 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=0.0 \mathrm{~V}, 1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=0.0 \mathrm{~V}, 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=0.0 \mathrm{~V}, 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=-2.0 \mathrm{~V}, 7.0 \mathrm{~V} \end{aligned}$
Settling Time to 15 mV to 4 mV		$\begin{aligned} & <50 \\ & <10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V} \end{aligned}$

Parameter	Min	Typ Max	Unit	Test Conditions
Delay Change vs. Pulsewidth Minimum Pulsewidth 3 V Swing 5 V Swing Toggle Rate		$\begin{aligned} & 50 \\ & \\ & 1.4 \\ & 2.0 \\ & 250 \end{aligned}$	ps ns ns MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2 \mathrm{~V}, \text { Pulsewidth }=2.5 \mathrm{~ns} / 7.5 \mathrm{~ns}, 30 \mathrm{~ns} / 90 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, 90 \%(2.7 \mathrm{~V}) \text { Reached, Measure @ } 50 \% \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, 90 \%(4.5 \mathrm{~V}) \text { Reached, Measure @ } 50 \% \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, \mathrm{VDUT}>3.0 \mathrm{~V} \text { p-p } \end{aligned}$
DYNAMIC PERFORMANCE, INHIBIT Delay Time, Active to Inhibit Delay Time, Inhibit to Active Delay Time Matching (Z) I/O Spike Rise, Fall Time, Active to Inhibit Rise, Fall Time, Inhibit to Active		$\begin{aligned} & 3.3 \\ & 2.9 \\ & <2 \\ & \\ & 150 \\ & 1.6 \\ & 1.4 \end{aligned}$	ns ns ns $\mathrm{mV}, \mathrm{p}-\mathrm{p}$ ns ns	Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$ $\mathrm{Z}=$ Delay Time Active to Inhibit Test (Above)— Delay Time Inhibit to Active Test (Above) (Of Worst Two Edges) $\begin{aligned} & \mathrm{V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V} \text { (Measured } 20 \% / 80 \% \text { of } 1 \mathrm{~V} \text { Output) } \\ & \mathrm{V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V} \text { (Measured } 20 \% / 80 \% \text { of } 1 \mathrm{~V} \text { Output) } \end{aligned}$
DYNAMIC PERFORMANCE , $\mathrm{V}_{\text {TERM }}$ Delay Time, V_{H} to $\mathrm{V}_{\text {TERM }}, \mathrm{V}_{\mathrm{L}}$ to $\mathrm{V}_{\text {TERM }}$ Delay Time, $\mathrm{V}_{\text {TERM }}$ to V_{H} and $\mathrm{V}_{\text {TERM }}$ to V_{L} Overshoot and Preshoot $\mathrm{V}_{\text {TERM }}$ Mode Rise Time $\mathrm{V}_{\text {TERM }}$ Mode Fall Time PSRR, DRIVE or TERM Mode		$\begin{aligned} & 2.5 \\ & 2.5 \\ & <3.0+75 \\ & 2.2 \\ & 2.2 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \% \text { of Step }+\mathrm{mV} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { Measured at } 50 \%, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TERM}}=0 \mathrm{~V} \\ & {\text { Measured at } 50 \%, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{H}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=-0.4 \mathrm{~V}}_{\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\text {TERM }}=(0 \mathrm{~V},-1 \mathrm{~V}),(0 \mathrm{~V},-2.0 \mathrm{~V}),}^{(0 \mathrm{~V}, 6.0 \mathrm{~V})} \\ & \mathrm{V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=0 \mathrm{~V}, 20 \%-80 \% \\ & \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=0 \mathrm{~V}, 20 \%-80 \% \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}} \pm 3 \% \end{aligned}$

Specifications subject to change without notice.

COMPARATOR SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. [Outputs terminated in 150Ω to $\mathrm{GND},+\mathrm{V}_{S}=11 \mathrm{~V} \pm 3 \%-\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \pm 3 \%$, $\mathrm{VCCO}=3.3 \mathrm{~V}$ unless otherwise specified.] All temperatures coefficients are measured at $\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$.)

Parameter	Min	Typ	Max	Unit	Test Conditions
DC INPUT CHARACTERISTICS Offset Voltage ($\mathrm{V}_{\text {OS }}$) Offset Voltage (Drift) HCOMP, LCOMP Bias Current Voltage Range (V_{CM}) Differential Voltage ($\mathrm{V}_{\text {DIFF }}$) Gain and Linearity	$\begin{aligned} & -25 \\ & -50 \\ & -2 \\ & -0.05 \\ & \hline \end{aligned}$	50	$\begin{aligned} & +25 \\ & +50 \\ & +7.0 \\ & 9.0 \\ & +0.05 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \% \mathrm{FSR} \end{aligned}$	$\begin{aligned} & \mathrm{CMV}=0 \mathrm{~V} \\ & \mathrm{CMV}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=-2 \mathrm{~V} \text { to }+7 \mathrm{~V}(9 \mathrm{~V} \text { FSR }) \end{aligned}$
LATCH ENABLE INPUTS Logic " 1 " Current (I_{IH}) Logic "0" Current ($\mathrm{I}_{\text {IL }}$) Logic Input Range	$\begin{aligned} & -250 \\ & -2 \end{aligned}$		$\begin{aligned} & 250 \\ & +3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$	LEA, $\overline{\mathrm{LEA}}, \mathrm{LEB}, \overline{\mathrm{LEB}}=+3 \mathrm{~V}$ LEA, $\overline{\mathrm{LEA}}, \mathrm{LEB}, \overline{\mathrm{LEB}}=-2 \mathrm{~V}$
DIGITAL OUTPUTS Logic " 1 " Voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ Logic " 0 " Voltage (V_{OL}) Slew Rate VCCO Range	$\begin{aligned} & \mathrm{VCCO}-0.98 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \text { VCCO - } 1.5 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} / \mathrm{ns} \\ & \mathrm{~V} \end{aligned}$	Q or $\overline{\mathrm{Q}}, 16.7 \mathrm{~mA}$ Load Q or $\overline{\mathrm{Q}}, 10 \mathrm{~mA}$ Load
SWITCHING PERFORMANCE Propagation Delay Input to Output Latch Enable to Output Propagation Delay Temperature Coefficient Propagation Delay Change with Respect to Slew Rate: $0.5 \mathrm{~V}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V} / \mathrm{ns}$ Slew Rate: $5.0 \mathrm{~V} / \mathrm{ns}$ Amplitude: $1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 5.0 \mathrm{~V}$ Equivalent Input Rise Time Pulsewidth Linearity Settling Time Latch Timing Input Pulsewidth Setup Time Hold Time Hysteresis		$\begin{aligned} & 1.8 \\ & 2 \\ & 2 \\ & < \pm 100 \\ & < \pm 350 \\ & < \pm 200 \\ & 450 \\ & < \pm 200 \\ & 25 \\ & \\ & 1.68 \\ & 1.0 \\ & 1.1 \\ & 6 \end{aligned}$		ns ns ps/ ${ }^{\circ} \mathrm{C}$ ps ps ps ps ps ns ns ns ns mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V} \text { p-p, } \\ & \mathrm{HCOMP}=1 \mathrm{~V}, \mathrm{LCOMP}=1 \mathrm{~V} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=1.0 \mathrm{~V} / \mathrm{ns} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, 3 \mathrm{~V} / \mathrm{ns} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, 3 \mathrm{~V} / \mathrm{ns}, \mathrm{PW}=3 \mathrm{~ns}-8 \mathrm{~ns} \end{aligned}$ Settling to $\pm 8 \mathrm{mV}, \mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ to 0 V Latch Inputs Programmed for Hysteresis

[^1]
AD53509-SPECIFICATIONS
 ACTIVE LOAD SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},+\mathrm{V}_{S}=11 \mathrm{~V} \pm 3 \%,-\mathrm{V}_{S}=-6 \mathrm{~V}= \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$.)

Parameter	Min	Typ	Max	Unit	Test Conditions
INPUT CHARACTERISTICS INHL, $\overline{\text { INHL }}$ Input Voltage Bias Current IOHC Current Program Range IOH $=0 \mathrm{~mA}$ to -40 mA IOLC Current Program Range $\mathrm{IOL}=0 \mathrm{~mA} \text { to }+40 \mathrm{~mA}$ IOHC, IOLC Input Bias Current IOLRTN, IOHRTN Range VDUT Range VDUT Range, $10 \mathrm{H}=0 \mathrm{~mA}$ to -40 mA VDUT Range, $10 L=0 \mathrm{~mA}$ to +40 mA VCOMI Input Range	$\begin{aligned} & -2 \\ & -250 \\ & 0 \\ & 0 \\ & -300 \\ & -2 \\ & -2 \\ & -0.7 \\ & -2 \\ & -2 \end{aligned}$		+3 250 4 4 +300 $+7$ $+7$ $+7$ $+5.7$ $+7$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { IOHC }=1 \mathrm{~V}, \mathrm{IOLC}=1 \mathrm{~V}, \mathrm{VCOM}=2 \mathrm{~V}, \mathrm{OUT}_{-} \mathrm{L}=0 \mathrm{~V} \\ & \mathrm{INHL}, \overline{\mathrm{INHL}}=-2 \mathrm{~V},+3 \mathrm{~V} \\ & \text { OUT_L }=-0.7 \mathrm{~V},+7 \mathrm{~V} \\ & \text { OUT_L }=-2 \mathrm{~V},+5.7 \mathrm{~V} \\ & \mathrm{IOLC}=0 \mathrm{~V}, 4.0 \mathrm{~V} \text { and } \mathrm{IOHC}=0 \mathrm{~V}, 4.0 \mathrm{~V} \\ & \mathrm{IOL}=+40 \mathrm{~mA}, \mathrm{IOH}=-40 \mathrm{~mA}, \mathrm{OUT}_{-} \mathrm{L}=-2 \mathrm{~V},+7 \mathrm{~V} \\ & \mathrm{IOL}=+40 \mathrm{~mA}, \mathrm{IOH}=-40 \mathrm{~mA}, \text { IOUT_L-VCOMI }>1.3 \mathrm{~V} \\ & \text { OUT_L }-\mathrm{VCOM}>1.3 \mathrm{~V} \\ & \text { VCOM-VDUT }>1.3 \mathrm{~V} \\ & \mathrm{IOL}=+40 \mathrm{~mA}, \mathrm{IOH}=-40 \mathrm{~mA} \end{aligned}$
OUTPUT CHARACTERISTICS Accuracy Absolute Accuracy Error, Load Current VCOM Buffer Offset Error Bias Current Gain Error Linearity Error Output Current TC	$\begin{aligned} & -0.3-100 \\ & \\ & -50 \\ & -10 \\ & -0.2 \\ & -10 \end{aligned}$	$+1$ $< \pm 2$	$\begin{aligned} & +0.3+100 \\ & \\ & +50 \\ & +10 \\ & +0.2 \\ & +10 \end{aligned}$	$\begin{aligned} & \% \mathrm{I}_{\mathrm{SET}}+\mu \mathrm{A} \\ & \mathrm{mV} \\ & \mu \mathrm{~A} \\ & \% \\ & \mathrm{mV} \\ & \mu \mathrm{~A} /{ }^{\circ} \mathrm{C} \end{aligned}$	
DYNAMIC PERFORMANCE Propagation Delay $\pm \mathrm{I}_{\text {OUT }}$ to Inhibit Inhibit to $\pm \mathrm{I}_{\text {OUT }}$ Propagation Delay Matching I/O Spike Settling Time to 15 mV Settling Time to 4 mV		$\begin{aligned} & 1.9 \\ & 2.8 \\ & <1.8 \\ & 240 \\ & <50 \\ & <10 \end{aligned}$		ns ns ns mV ns $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{VCOM}= \pm 2 \mathrm{~V}, \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA} \\ & \mathrm{VCOM}= \pm 2 \mathrm{~V}, \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=20 \mathrm{~mA} \\ & \mathrm{VCOM}=0 \mathrm{~V}, \mathrm{IOL}=+20 \mathrm{~mA}, I O H=-20 \mathrm{~mA} \\ & \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA}, 50 \Omega \mathrm{Load}, \text { to } \pm 15 \mathrm{mV} \\ & \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA}, 50 \Omega \text { Load, to } \pm 4 \mathrm{mV} \end{aligned}$

Specifications subject to change without notice.

TOTAL FUNCTION SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{S}=11 \mathrm{~V} \pm 3 \%,-\mathrm{V}_{S}=-6 \mathrm{~V}= \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$.)

Parameter	Min	Typ	Max	Unit	Test Conditions
OUTPUT CHARACTERISTICS Output Leakage Current, $\mathrm{V}_{\text {Out }}=-1 \mathrm{~V}$ to +5 V Output Leakage Current, $\mathrm{V}_{\text {Out }}=-2 \mathrm{~V}$ to +7 V Output Capacitance	$\begin{aligned} & -250 \\ & -500 \end{aligned}$	8	$\begin{aligned} & +250 \\ & +500 \end{aligned}$	nA $\mu \mathrm{A}$ pF	Driver and Load INHIBITED
POWER SUPPLIES Total Supply Range Positive Supply Negative Supply Positive Supply Current Negative Supply Current VCCO Current Total Power Dissipation Temperature Sensor Gain Factor		$\begin{aligned} & 17 \\ & 11 \\ & -6 \end{aligned}$ 65 1	$\begin{aligned} & 280 \\ & 290 \\ & 4.8 \end{aligned}$	V V V mA mA mA W $\mu \mathrm{A} / \mathrm{K}$	Driver $=\mathrm{I}_{\mathrm{NH}}, \mathrm{I}_{\text {LOAD }}$ Program $=40 \mathrm{~mA}$, Load $=$ Active Driver $=\mathrm{I}_{\mathrm{NH}}, \mathrm{I}_{\text {LOAD }}$ Program $=40 \mathrm{~mA}$, Load $=$ Active VCCO $=3.3 \mathrm{~V}$, Comparator Output 150Ω to GND Driver $=\mathrm{I}_{\mathrm{NH}}, \mathrm{I}_{\text {LOAD }}$ Program $=40 \mathrm{~mA}$, Load $=$ Active $\mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {SOURCE }}=11 \mathrm{~V}$

NOTES

Connecting or shorting the decoupling pins to ground will result in the destruction of the device.
Specifications subject to change without notice.

Table I. Driver Truth Table

DATA	$\overline{\text { DATA }}$	IOD	$\overline{\text { IOD }}$	RLD	$\overline{\text { RLD }}$	OUTPUT STATE
0	1	1	0	X	X	V_{L}
1	0	1	0	X	X	V_{H}
X	X	0	1	0	1	NH
X	X	0	1	1	0	$\mathrm{~V}_{\text {TERM }}$

Table II. Comparator Truth Table

VOUT		LEH	$\overline{\text { LEH }}$	LEL	$\overline{\text { LEL }}$	OUTPUT STATES				
		QH				$\overline{\mathbf{Q H}}$	QL	$\overline{\mathbf{Q L}}$		
> HCOMP	>LCOMP		1	0	1	0	1	0	1	0
> HCOMP	<LCOMP	1	0	1	0	1	0	0	1	
< HCOMP	>LCOMP	1	0	1	0	0	1	1	0	
< HCOMP	<LCOMP	1	0	1	0	0	1	0	1	
X	X	0	1	0	1	QH (t-1)	$\overline{\mathrm{QH}}(\mathrm{t}-1)$	QL (t-1)	$\overline{\mathrm{QL}}(\mathrm{t}-1)$	

Table III. Active Load Truth Table

		OUTPUT STATES (Including Diode Bridge)			
OUT_L	INHL	$\overline{\text { INHL }}$	$\mathbf{I O H}$	IOL	I(OUT_L)
$<\mathrm{VCOM}$	0	1	$\mathrm{~V}(\mathrm{IOHC}) \times 10 \mathrm{~mA}$	$\mathrm{~V}(\mathrm{IOLC}) \times 10 \mathrm{~mA}$	IOL
$>\mathrm{VCOM}$	0	1	$\mathrm{~V}(\mathrm{IOHC}) \times 10 \mathrm{~mA}$	$\mathrm{~V}(\mathrm{IOLC}) \times 10 \mathrm{~mA}$	IOH
X	1	0	0	0	0

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$	
Power Supply Voltage	
VCC to GND	13 V
VEE to GND	-8 V
VCC to VEE	20 V
VCCO to GND	10 V
PWR GND HQ GND	$\pm 0.4 \mathrm{~V}$
Inputs	
DATA, DATA, IOD, IOD, RLD, RLD $+5 \mathrm{~V},-2 \mathrm{~V}$	
DATA to $\overline{\text { DATA }}$, IOD to $\overline{\mathrm{IOD}}, \mathrm{RLD}$ to $\overline{\mathrm{RLD}} \ldots \ldots \pm \pm 3 \mathrm{~V}$	
LEL to $\overline{\mathrm{LEL}}, \mathrm{LEH}$ to $\overline{\mathrm{LEH}}$. $\pm 3 \mathrm{~V}$	
INHL, INHL . +5 V, -2 V	
VH, VL, VTERM, VCOM_I to GND +8 V, -3 V VH to VL $\pm 10 \mathrm{~V}$	
(VH-VTERM) and (VTERM - VL) $\pm 10 \mathrm{~V}$	
IOHC . ± 6 V	
IOLC . $\pm 6 \mathrm{~V}$	
HCOMP +8 V , -3 V	
LCOMP . +8 V, -3 V	
HCOMP, LCOMP to V ${ }_{\text {OUT }}$. $\pm 10 \mathrm{~V}$	
Outputs	
Vout Inhibit Mode . $+8 \mathrm{~V},-3 \mathrm{~V}$	
VHDCPL Do Not Connect Except for Cap to V CC	
VLDCPL Do Not Connect Except for Cap to V EE	
$\mathrm{QH}, \overline{\mathrm{QH}}, \mathrm{QL}, \overline{\mathrm{QL}}$ Maximum $\mathrm{I}_{\text {OUT }}$	
Continuous . 50 mA	
Surge . 100 mA	
THERM . $13 \mathrm{~V}, 0 \mathrm{~V}$	
IOHRTN, IOLRTN $+8.5 \mathrm{~V},-3.5 \mathrm{~V}$	
VCOM_S Short Circuit Duration $3 \sec ^{2}$	

Abstract

Environmental Operating Temperature (Junction) $175^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec$)^{3}$. $260^{\circ} \mathrm{C}$ NOTES ${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ${ }^{2}$ Output short circuit protection is guaranteed as long as proper heat sinking is employed to ensure compliance with the operating temperature limits. ${ }^{3}$ To ensure lead coplanarity (± 0.002 inches) and solderability, handling with bare hands should be avoided and the device should be stored in environments at $24^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F} \pm 10^{\circ} \mathrm{F}\right)$ with relative humidity not to exceed 65%.

Table IV. Package Thermal Characteristics

Air Flow, FM	$\boldsymbol{\theta}_{\mathbf{J A}},{ }^{\circ} \mathbf{C} / \mathbf{W}$
0	33
200	25
400	22

ORDERING GUIDE

Model	Package Description	Shipment Method Quantity per Shipping Container	Package Option
AD53509JSQ	52-Lead LQFP-EDQUAD	90	SQ-52

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53509 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

52-Lead LQFP-EDQUAD with Integral Heat Slug

(SQ-52)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: Specifications subject to change without notice.

