Dual, USB 2.0 Full/Standby Power Controller with Supply Steering

Preliminary Technical Data

FEATURES
500mA Load Current (100mA in Standby Mode)
$135 \mathrm{~m} \Omega$ On Resistance
Switchable Current Limit
50 $\mu \mathrm{A}$ Typical Quiescent Current
10nA Typical Shutdown Current
40nA Typical Switch Off Leakage
Short-Circuit Protection
Thermal Shutdown
FLT Outputs
Small, 16-Pin QSOP Package
APPLICATIONS
Desktop Computers
Palmtop Computers
NotebookComputers
Hand-Held Instruments Universal Serial Bus (USB)

GENERAL DESCRIPTION
The ADM 1072 is a logic controlled, dual P-channel switch with low on resistance and a built-in current limiter, capable of sourcing up to 1 A from supply voltages between 2.7 V and 5.5 V . In addition to logic inputs that switch each channel on and off, the device has a standby input that switches the output current limit, making it ideal for use with U SB peripherals. In normal operating mode and Standby mode the output current is typically limited to 500 mA and 100 mA respectively, as outlined by the USB2.0 Specification. This allows the system power supply to be protected against short-circuits and surge currents in peripheral U SB devices powered via the ADM 1072. O ver-current and over-temperature conditions are signalled by a fault output ($\overline{\mathrm{FLT}}$) for each channel.
The AD M 1072 also offers low quiescent current of typically $50 \mu \mathrm{~A}$ and shutdown current of typically 10 nA .

FUNCTIONAL BLOCK DIAGRAM
Rev. PrE 1/02

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002

ADM1072- SPECIFICATIONS

(Specification for either channel 1 or channel $2, \mathrm{~V}_{\mathbb{N}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	M in	Typ	M ax	U nits	Test Conditions/Comments
Operating Voltage R ange	+2.7		+5.5	Volts	
Quiescent C urrent (T otal D evice)		50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \overline{\mathrm{ON} 1}, \overline{\mathrm{ON} 2}=\mathrm{GND}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$
Shutdown Supply Current (T otal D evice)		0.01	2	$\mu \mathrm{A}$	$\overline{\mathrm{ON} 1}, \overline{\mathrm{ON} 2}=\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$
U ndervoltage Lockout	2.0	2.3	2.6	V	$\mathrm{V}_{\text {STBY_IN }}$, R ising Edge, 1\% H ysteresis
On Resistance		$\begin{aligned} & ? \\ & ? \end{aligned}$	$\begin{aligned} & 135 \\ & ? \end{aligned}$	$\begin{gathered} \mathrm{m} \Omega \\ \mathrm{~m} \Omega \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=4.75 \mathrm{~V} \\ & V_{\text {IN }}=3.0 \mathrm{~V} \end{aligned}$
NOMINAL CURRENT-LIMIT Full Power M ode Standby M ode	$\begin{aligned} & 0.8 \\ & 160 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 200 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 240 \end{aligned}$	A mA	STBY Low Note 1 STBY High N ote 1
$\overline{\mathrm{ON1}}, \overline{\mathrm{ON} 2}$, ST BY Input Low Voltage, $\mathrm{V}_{\text {IL }}$			0.8	V	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V
$\overline{\mathrm{ON} 1}, \overline{\mathrm{ON} 2}$, STBY Input High Voltage, V_{IH}	2.4			V	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V
$\overline{\overline{\mathrm{ON} 1}, \overline{\mathrm{ON} 2}, \mathrm{ST} \mathrm{BY} \text { Input Leakage }}$		0.01	± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\overline{\mathrm{ON}},} \mathrm{V}_{\text {STBY }}=5.5 \mathrm{~V}$
$\overline{\text { FLT1 }}, \overline{\text { FLT2 }}$ L ogic Output L ow Voltage			0.4	V	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$
$\overline{\overline{\text { FLT1 }}, \overline{\text { FLT2 }} \text { Output High Leakage C urrent }}$		0.05	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V}$
Turn-On Time			$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA} \end{aligned}$
Turn-Off Time	?	?	20	$\mu \mathrm{s}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$

Notes

${ }^{1}$ Current limit is specified with $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$.
${ }^{2}$ Guaranteed by design. Derived from the $\mathrm{I}_{\text {SET }}$ current ratio, current-limit amplifier and internal set resistor accuraciues.
${ }^{3}$ T ested with $\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$ and $\mathrm{V}_{\text {SET }}$ adjusted until $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \geqslant 0.8 \mathrm{~V}$.
${ }^{4}$ Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not tested.

ABSOLUTE MAXIMUM RATINGS*
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
MAIN IN to GND . -0.3 V to +6 V
$\overline{\mathrm{ON1}}, \overline{\mathrm{ON}}, \overline{\mathrm{FLT}}, \overline{\mathrm{FLT}}$ to GND \ldots.
$\overline{\mathrm{OP} 1}, \overline{\mathrm{OP} 2}$ to $\mathrm{GND}+0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
M aximum Switch Current
Full Power M ode . IA
Standby Power M ode 200mA
Continuous Power Dissipation ($\mathrm{TA}=+70^{\circ} \mathrm{C}$) 667 mW
QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
Operating T emperature Range
Industrial (A Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
*T his is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

THERMAL CHARACTERISTICS
16-Pin QSOP Package:
$q_{j A}=105^{\circ} \mathrm{C} / \mathrm{W}$ att, $q_{j} \mathrm{C}=40^{\circ} \mathrm{C} / \mathrm{W}$ att

ORDERING	GUIDE		
	Temperature	Package M odel	Pange
ADM 1072ARQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Pin QSOP	RQ-16 Package

Pin Configuration

PIN FUNCTION DESCRIPTION

Pin	Mnemonic	Function
2, 3, 14, 15	MAIN_IN	Input to M AIN P-channel M OSFET source (both channels). Bypass M AIN_IN with a $22 \mu \mathrm{~F}$ capacitor to ground.
5, 12	STBY_IN	Input to Standby P-channel M OSFET source (both channels) and supply to chip circuitry. Bypass STBY_IN with a $4.7 \mu \mathrm{~F}$ capacitor to ground.
1, 4	OP1	Output from channel 1, P-channel M OSFET drains. Bypass OP1 with a 120μ F capacitor to ground.
13, 16	OP2	O utput from channel 2, P-channel M OSFET drains. Bypass OP2 with a 120μ F capacitor to ground.
6	$\overline{\text { FLT1 }}$	Open-D rain Digital Output. $\overline{\text { FLT1 }}$ goes low when the channel 1 current limit is exceeded for 10 mS or the die temperature exceeds $+150^{\circ} \mathrm{C}$. During startup, $\overline{\mathrm{FLT} 1}$ remains low for the turn-on time.
7	$\overline{\text { FLT2 }}$	Open-D rain Digital Output. $\overline{\text { FLT2 }}$ goes low when the channel 2 current limit is exceeded for 10 mS or the die temperature exceeds $+150^{\circ} \mathrm{C}$. During startup, $\overline{\mathrm{FLT} 2}$ remains low for the turn-on time.
8	GND	Ground pin for all chip circuits.
9	STBY	Digital Input. Active high standby mode input. ST BY $=0$ sets normal operating mode with 500 mA current limit. ST BY $=1$ sets standby mode with 100 mA current limit.
10	$\overline{\mathrm{ON} 2}$	Digital Input. Activelow switch enable for channel 2 (logic 0 turns the switch on).
11	$\overline{\mathrm{ON1}}$	Digital Input. Active-low switch enable for channel 1 (logic 0 turns the switch on).

ADM1072
Typical Performance Curves

Figure 1. Quiescent Current vs. Input Voltage

Figure 2. Quiescent Current vs. Temperature

Figure 3. Off-Supply Current vs. Temperature

Figure 4. Off-Switch Current vs. Temperature

Figure 5. Normalized On Resistance vs. Temperature

Figure 6. $\mathrm{I}_{\text {OUT }} / /_{\text {SET }}$ Ratio vs Switch Current

Typical Performance Curves

Figure 7. Normalized Output Current vs. Output Voltage

Figure 8. Turn-On Time vs. Temperature

Figure 9. Turn-Off Time vs. Temperature

Figure 10. Fast Current-Limit Response

Figure 11. Slow Current-Limit Response

Figure 12. Load Transient Response

Typical Performance Curves

Figure 13. Switch Turn-On Time

Figure 14. Switch Turn-Off Time

Figure 15. USB Circuit Output Rise Time

Figure 16 USB Circuit output Fall Time

FUNCTIONAL DESCRIPTION
The AD M 1072 is a dual, logic-controlled P-channel switch. Each channel of the ADM 1072 comprises two P-channel switches. The source of one switch is connected to the
"MAIN IN" input pins and can switch up to 1A. The second switch is conected to the "ST BY IN" pins and can switch up to 200 mA . T he device is rated to provide 500 mA continuously in full power mode and 100 mA continuously in ST BY mode. The STBY IN inputs also provide the power for the chip circuitry and so must be connected to a supply at all times.
When STBY is low the M AIN switch is active and when STBY is high the Standby switch is active.
Each channel is individually controlled by an active-low logic input $\overline{\mathrm{ON} 1}$ (pin 11) and $\overline{\mathrm{ON} 2}$ (pin 10). When either $\overline{\mathrm{ON} 1}$ or $\overline{\mathrm{ON} 2}$ is low, the internal circuitry of the ADM 1072 is powered up and the output of the corresponding current-limit amplifier is low, providing gate drive to the switching FET, thus turning it on. When both $\overline{\mathrm{ON}}$ inputs are high, the internal circuitry is powered down and the current consumption is typically 10 nA .
It should be noted that the AD M 1072 is not a bi-directional switch, so $\mathrm{V}_{\text {IN }}$ must always be higher than $\mathrm{V}_{\text {OUt }}$.
TABLE 1. Truth Table for $\overline{\mathbf{O N 1}}, \overline{\mathbf{O N} 2}$ and STBY

$\overline{\mathbf{O N 1}}$	$\overline{\mathbf{O N} \mathbf{2}}$	STBY	Channel 1	Channel 2
0	0	0	500 mA	500 mA
0	0	1	100 mA	100 mA
0	1	0	500 mA	OFF
0	1	1	100 mA	OFF
1	0	0	OFF	500 mA
1	0	1	OFF	100 mA
1	1	X	BOTH SHUT DOWN	

X = don't care

CURRENT LIMIT

When either the M ain or Standby switch is turned on a smaller mirror switch passes a proportionate current equal to I out/ 1000. The mirror amplifier maintains this relationship by keeping the drain of the mirror FET at the same voltage as the main FET, and drives the mirror current through an internal current-limit resistor, which is connected between the noninverting input of the current limit amplifier and ground. An on-chip bandgap reference of 1.24 V is connected to the inverting input of the current-limit amplifier. When the load current exceeds the preset limit, the voltage across the currentlimit resistor exceeds 1.24 V and the output voltage of the cur-rent-limit amplifier rises, reducing the gate drive to the FET s .

By selecting between the Standby and M ain FET s and their associated mirror FET s, the ST BY input allows the two different values of current limit specified by U SB2.0 to be selected.
This feature is particularly useful when driving USB peripherals from a host system such as a PC that can go into a powersaving mode, since it limits the current that the peripherals can attempt to draw from the host power supply.

SHORT-CIRCUIT PROTECTION

The proportional relationship between the main FET and the mirror FET is only maintained down to an output voltage of about 1.6 V . Below this voltage the output current is limited to approximately $1.2 \times \mathrm{I}_{\text {LIMIT }}$.
In the event of a high $\mathrm{dV} / \mathrm{dt}$ across the switching FET during a short-circuit, the switch will turn off and disconnect the input from the output. The switch is then turned on slowly with the current limited to the short-circuit value.

THERMALSHUTDOWN

The thermal shutdown operates when the die temperature exceeds $+150^{\circ} \mathrm{C}$, turning off both channels. The thermal shutdown circuit has built-in hysteresis of $10^{\circ} \mathrm{C}$, so the switch will not turn on again until the die temperature falls to $+140^{\circ} \mathrm{C}$. If the fault condition is not removed, the switch will pulse on and off as the temperature cycles between these limits.

UNDERVOLTAGELOCKOUT

The undervoltage sensor monitors the input supply voltage (ie) the voltage on ST BY_IN. The outputs will not turn on until the supply voltage is sufficient for the chip circuits to operate reliably. Undervoltage lockout occurs at between 2.0 and 2.6 V .

FLTOUTPUTS

The AD M 1072 has active-low fault outputs for each channel, $\overline{\text { FLT1 }}$ (pin 6) and $\overline{\text { FLT2 }}$ (pin 7). If the current limit is exceeded for greater than 10mS, the corresponding $\overline{\text { FLT }}$ output will pull low. If the thermal shutdown is activated, both $\overline{\text { FLT }}$ outputs will pull low. The $\overline{\mathrm{FLT}}$ outputs are open-drain and require a pullup resistor of between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. Several $\overline{\text { FLT }}$ outputs may be wire-OR'd to form a common interrupt line, as shown in Figure 17 or $\overline{\text { FLT }}$ outputs may be wire-OR'd to an existing interrupt line that has a resistive pullup.

Figure 17. Wire Or'ing FAULT Outputs
D uring startup, the FLT output goes low for the turn-on time.

ADM1072

APPLICATIONSINFORMATION

INPUT FILTERING
To prevent the input voltage being pulled below the minimum operating voltage under transient short-circuit conditions, before the current limit has had time to operate, a reservoir capacitor should be connected from M AIN IN to GND. This does not need to be large, but should have \bar{a} low ESR. A value of around $10-22 \mu \mathrm{~F}$ is suitable. Larger values will reduce the voltage drop still further. The STBY_IN input requires a proportionately smaller value, typically 2.2 to $4.7 \mu \mathrm{~F}$.

OUTPUT CAPACITANCE
$120 \mu \mathrm{~F}$ capacitors should be connected between OP1 and OP2 and GND to prevent the back e.m.f. of parasitic inductance from pulling OP1 and OP2 below ground during turn-off and to provide adequate turn- on current for U niversal Serial Bus (USB) applications that are hot plugged to OP! or OP2. This causes the output rise and fall times to be longer, as shown in the typical operating characteristics, but does not affect the turn-off time of the AD M 1072 itself.

LAYOUT CONSIDERATIONS
Printed circuit board tracks to and from the ADM 1072 should be as thick and as short as possible to minimise parasitic inductance and take full advantage of the fast response time of the switch. Input and output capacitors should be placed as close to the device as possible (less than 5 mm).

THERMAL CONSIDERATIONS
Under normal operating conditions, the worst-case power dissipation will be 135 mW with the $135 \mathrm{~m} \Omega$ on resistance and 3 V supply ($\mathrm{W}=(1 \mathrm{~A})^{2} \times 0.135 \Omega$). The package is capable of handling and dissipating this power, but heat dissipation can further be improved by providing a large area of copper in contact with the device pins, particularly M AIN _IN and OP1,OP2.

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

16-Pin QSOP Package (RQ-16)

