Dual PCI Hot-Plug ${ }^{\text {MI }}$ Controller

Preliminary Technical Data ADM1014

FUNCTIONAL BLOCK DIAGRAM
REV. PrN 1/02

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
${ }^{\text {TM }} \mathrm{H}$ ot Plug is a trademark of C ore International, Inc.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: $\quad 781 / 329-4700$
Fax: 781/326-8703
www.analog.com
© Analog Devices, Inc., 2002

FEATURES

Controls Two PCI Slots

Controls all Four PCI Supplies, $+3.3 \mathrm{~V},+5 \mathrm{~V},+12 \mathrm{~V}$, -12V, plus 3.3V auxiliary supply
Internal MOSFET Switches for +3.3V AUX, +12V
and -12 V outputs
Adjustable Overcurrent Protection for all Outputs
Undervoltage Protection on +3.3V, +5V, +12V and +3.3V AUX Supplies
Open-Drain Fault Output with Adjustable Delay Logic Control of Outputs
Adjustable Soft-start

APPLICATIONS
 Compact PCI
 PCI Hot-Plug ${ }^{\text {TM }}$

GENERAL DESCRIPTION

The ADM 1014 is a dual PCI voltage bus controller that allows hot-plugging of adapter cards into and out of an active or passive backplane. The device requires only four external power M OSFETs and a few discrete components for a complete power-control solution for two PCI slots.

The ADM 1014 operates from $a+12 \mathrm{~V}$ and +3.3 V AU X supply and controls five independent supplies ($+3.3 \mathrm{~V},+3.3 \mathrm{VAUX}$, $+5 \mathrm{~V},+12 \mathrm{~V}$ and -12 V) on two separate channels (A and B). The power switches for the $+3.3 \mathrm{VAUX},+12 \mathrm{~V}$ and -12 V supplies are integrated onto the chip, and internal current limiting is provided. F or the +3.3 V and +5 V supplies, the device drives external, N -channel, power M OSFETs, and provides overcurrent protection by sensing the voltage drop across external current-sense resistors.
The current limits for all 10 supplies are set by a single resistor to GND, connected to the OCSET pin.
U ndervoltage sensing is provided on the $+3.3 \mathrm{~V},+5 \mathrm{~V},+12 \mathrm{~V}$ and +3.3 VA ux supplies. O vercurrent sensing is provided on all supplies. In the event of an overcurrent or undervoltage fault on any of the outputs of either channel, all outputs on that channel will be turned off.
T urn-on slew rate may be controlled using eight external capacitors, connected to the gate drives of all of the supplies.
Logic control of the four main outputs is provided by the PWRONA and PWRONB pins. When these pins are high, the outputs are turned on, when low, the outputs are turned off. The +3.3VAUX supplies have their own control inputs, PAUXA and PAUXB.
(Specifications are for each channel, $3.3 \mathrm{VAUX}=$ AUXINA $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=12 \mathrm{VIN}=+12 \mathrm{~V},-12 \mathrm{VIN}=-12 \mathrm{~V}$, Nominal 3.3 V and 5 V supplies to external MOSFETs, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	M in	Typ	M ax	U nits	T est Conditions/C omments
5V/ 3.3V SUPPLY CONTROL					
5V Overcurrent Threshold	-	8	-	A	See Typical Application Diagram
5V Overcurrent Threshold Voltage	33	42	50	mV	$\mathrm{V}_{\text {OCSET }}=0.6 \mathrm{~V}$
5V O vercurrent Threshold Voltage	70	80	90	mV	$\mathrm{V}_{\text {OCSET }}=1.2 \mathrm{~V}$
5V U ndervoltage T rip T hreshold	4.42	4.65	4.7	V	
5V U ndervoltage F ault Response T ime	-	110	160	ns	
5V Turn-On Time (PWRON High to 5VOUT $=4.75 \mathrm{~V}$)	-	9.75	-	ms	$\begin{aligned} & C_{3 V 5 V G}=0.033 \mu \mathrm{~F}, \mathrm{C}_{\text {5VOUT }}=2000 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=1 \Omega \end{aligned}$
3 V Overcurrent T hreshold	-	10	-	A	See Typical Application D iagram
3V Overcurrent T hreshold Voltage	41	52	62	mV	OCSET $=0.6 \mathrm{~V}$
3V Overcurrent Threshold Voltage	89	98	108	mV	OCSET $=1.2 \mathrm{~V}$
3V U ndervoltage T rip T hreshold	2.74	2.86	2.9	V	
3V U ndervoltage F ault Response T ime	-	110	160	ns	
3V5VG Undervoltage Enable Threshold Voltage	-	9.6	-	V	
3V Turn-On Time (PWRON High to $3 \mathrm{VOUT}=3.00 \mathrm{~V}$)	-	9.75	-	ms	$\begin{aligned} & \mathrm{C}_{3 V 5 V G}=0.033 \mu \mathrm{~F}, \mathrm{C}_{\text {3VOUT }}=2000 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=0.43 \Omega \end{aligned}$
3V5VG Vout High	11.5	11.8	-	V	PWRON $=$ High, FLTN $=$ High
G ate O utput C harge C urrent	19	25.0	29	$\mu \mathrm{A}$	PWRON $=$ High, $\mathrm{V}_{3 \mathrm{~V} 5 \mathrm{VG}}=4 \mathrm{~V}$
G ate T urn-On Time (PWRON High to 3V5VG = 11V)	-	280	-	$\mu \mathrm{S}$	$\mathrm{C}_{\text {3V5VG }}=0.033 \mu \mathrm{~F}, 3 \mathrm{~V} 5 \mathrm{VG}$ Rising 10% to 90%
Gate T urn-Off Time	-	2	-	$\mu \mathrm{s}$	$\mathrm{C}_{3 \mathrm{~V} 5 \mathrm{VG}}=0.033 \mu \mathrm{~F}, 3 \mathrm{~V} 5 \mathrm{VG}$ Falling 90% to 10%
+12V SUPPLY CONTROL					
On Resistance of Internal PM OS	-	0.3	0.35	Ω	PWRON $=\mathrm{High}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$
On Resistance of Internal PM OS	-	0.35	0.5	Ω	PWRON $=\mathrm{High}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~T}_{A}=\mathrm{T}_{J}=70^{\circ} \mathrm{C}$
O vercurrent T hreshold	0.6	0.75	0.9	A	$\mathrm{V}_{\text {OCSET }}=0.6 \mathrm{~V}$
O vercurrent T hreshold	1.25	1.50	1.8	A	$\mathrm{V}_{\text {OCSET }}=1.2 \mathrm{~V}$
12V U ndervoltage T rip Threshold	10.25	10.6	10.8	V	
U ndervoltage F ault Response Time	-	110	-	ns	

ADM1014- SPECIFICATIONS (Continued)

(Specifications are for each channel, $3.3 \mathrm{VAUX}=$ AUXINA $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{VIN}=+12 \mathrm{~V},-12 \mathrm{VIN}=-12 \mathrm{~V}$, Nominal 3.3 V and 5 V supplies to external MOSFETs, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	M in	Typ	M ax	U nits	T est Conditions/C omments
G ate C harge Current Turn-On Time (PWRON High to $12 \mathrm{VG}=1 \mathrm{~V}$) Turn-Off T ime	19	$\begin{aligned} & 25.0 \\ & 16 \\ & 4.5 \end{aligned}$	29	$\mu \mathrm{A}$ ms $\mu \mathrm{S}$	$\begin{aligned} & \text { PWRON }=H \text { igh, V } 12 \mathrm{VG}=10 \mathrm{~V} \\ & \mathrm{C}_{12 \mathrm{VG}}=0.033 \mu \mathrm{~F}, 12 \mathrm{VG} \text { Falling } 90 \%-10 \% \\ & \mathrm{C}_{12 \mathrm{VG}}=0.033 \mu \mathrm{~F}, 12 \mathrm{VG} \text { Rising } 10 \%-90 \% \end{aligned}$
-12V SUPPLY CONTROL On Resistance of Internal N M OS On Resistance of Internal N M OS O vercurrent T hreshold O vercurrent T hreshold G ate O utput C harge C urrent T urn-On Time (PWRON H igh to M 12VO $=-10.8 \mathrm{~V}$) T urn-Off T ime M 12VIN Input Bias Current	$\begin{aligned} & 0.13 \\ & 0.23 \\ & 19 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1 \\ & 0.18 \\ & 0.38 \\ & 25 \\ & 16 \\ & \\ & 3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.3 \\ & 0.25 \\ & 0.52 \\ & 29 \\ & - \\ & - \\ & 5 \end{aligned}$	Ω Ω A A $\mu \mathrm{A}$ ms us mA	PWRON $=\mathrm{High}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ PWRON $=\mathrm{High}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$ $\mathrm{V}_{\text {OCSET }}=0.6 \mathrm{~V}$ $V_{\text {OCSET }}=1.2 \mathrm{~V}$ PWRON $=\mathrm{H}$ igh, $\mathrm{V}_{\text {M12VG }}=-10 \mathrm{~V}$ $\mathrm{C}_{\mathrm{M} 12 \mathrm{VG}}=0.033 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{M} 12 \mathrm{VO}}=50 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=120 \Omega$ $C_{\text {M 12VG }}=0.033 \mu F, M 12 V G$ Falling $90 \%-10 \%$ PWRON $=\mathrm{H}$ igh
+3.3VAUX SUPPLY CONTROL On Resistance of Internal PM OS On Resistance of Internal PM OS O vercurrent Threshold O vercurrent Threshold 3.3VAU X Undervoltage T rip Threshold U ndervoltage F ault Response Time G ate C harge C urrent Turn-On Time (PAUXON High to AUXG = 1V) T urn-Off T ime 3.3VAU X Power On Reset T hreshold	19	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.5 \\ & 1.0 \\ & 2.9 \\ & 110 \\ & 25.0 \\ & \\ & 16 \\ & 3 \\ & 2.5 \end{aligned}$	TBD TBD TBD TBD TBD 29	Ω Ω A A V ns $\mu \mathrm{A}$ ms $\mu \mathrm{S}$ V	$\begin{aligned} & \text { PAUXON }=H \text { igh, } I_{D}=0.375 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \text { PAUXON }=\mathrm{H} \text { igh, } I_{D}=0.375 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {OCSET }}=0.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {OCSET }}=1.2 \mathrm{~V} \\ & \\ & \text { PAUXON }=\mathrm{H} \text { igh, } \mathrm{V}_{\text {AUXG }}=3 \mathrm{~V} \\ & \\ & \mathrm{C}_{\text {AUXG }}=0.033 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {AUXG }}=0.033 \mu \mathrm{~F}, \mathrm{AUXG} \text { Rising } 10 \%-90 \% \\ & \text { AUXIN Voltage Rising } \end{aligned}$
CONTROL PINS 12VIN Supply Current AUXIN Supply Current OCSET Current O vercurrent to Fault Response Time PWRON A/B, PAUXA/B Threshold Voltage 12V Power On Enable Threshold 12V Power On Reset Threshold	$\begin{aligned} & - \\ & - \\ & 93 \\ & - \\ & 1.0 \\ & 9.4 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3 \\ & 100 \\ & 500 \\ & 1.6 \\ & 10 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { TBD } \\ & 107 \\ & 960 \\ & 2.1 \\ & 10.2 \\ & 9.3 \end{aligned}$	mA mA $\mu \mathrm{A}$ ns V V V	12VIN A Voltage Rising 12VINA Voltage Falling
FAULT O/P PINS $\overline{\text { FLTA }} / \bar{B}$ Output Low Voltage $\overline{\mathrm{FLTA}} \overline{\mathrm{B}}$ Output High Voltage $\overline{\mathrm{FLTA}} \overline{\mathrm{B}}$, Output Latch Threshold $\overline{\text { FAUXA }} / \bar{B}$ Output Low Voltage $\overline{\text { FAUXA }} \bar{B}$ Output High Voltage $\overline{\text { FAUXA }} \bar{B}$ Output Latch Threshold	AUXINTBD AUXINTBD	$\begin{gathered} \\ 5 \\ 5 \\ \text { AUXI } \\ 1.6 \\ 0.5 \\ 5 \\ 5 \text { AUXI } \\ 1.6 \end{gathered}$	$\begin{gathered} 0.7 \\ 0.1- \\ \text { TBD } \\ 0.7 \\ 0.1- \\ \text { TBD } \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & I_{\overline{\mathrm{LLT}}}=2 \mathrm{~mA} \\ & I_{\overline{\mathrm{FLT}}}=0 \end{aligned}$ $I_{\overline{\text { FLT }}}$ High to Low transition $I_{\overline{\mathrm{FAUX}}}=2 \mathrm{~mA}$ $I_{\text {FAUX }}=0$ $\mathrm{I}_{\overline{\text { FAUX }}} \mathrm{H}$ igh to Low transition

NOTES
Specifications subject to change without notice.

ADM1014- SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{\mathrm{CC}}, 12 \mathrm{VIN} .-0.5 \mathrm{~V}$ to +14.0 V
12V0, 12VG, 3V5VG -0.5 V to V 12VIN +0.5 V
-12VIN 14.0 V to +0.5 V
-12V0, -12VG V-12VIN -0.5 V to +0.5 V
3VISEN, 5VISEN ... -0.5V to the Lesser of 12VIN or +7.0 V
Voltage, Any Other Pin 0.5 V to +7.0 V
12VO Output Current . 3A
-12VO Output C urrent . 0.8A
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 667mW
TSSOP (derate $8.3 \mathrm{~mW} / \mathrm{oC}$ above $+70^{\circ} \mathrm{C}$)
Operating T emperature R ange
Commercial (J Version) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
*T his is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

THE RMAL CHARACTERISTICS

38-P in T SSOP Package:
$q_{\mathrm{I}}=100^{\circ} \mathrm{C} / \mathrm{W}$ att, $q_{j} \mathrm{C}=10^{\circ} \mathrm{C} / \mathrm{W}$ att

ORDERING GUIDE

M odel	Temperature Range	Package Description	Package Option
ADM 1014JRU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	38 -Pin TSSOP	RU-38

PIN CONFIGURATION

M12VOA	1	ADM1014TOP VIEW(Not to Scale)	38	M12VINA
M12VGA	2		37	3VISENA
PWRONA	3		36	3VSA
FLTNA	4		35	5VISENA
FAUXA	5		34	5VSA
OCSET	6		33	3 V VGA
AUXGA	7		32	GND
AUXOA	8		31	AUXINA
12VGA	9		30	PAUXONA
12VOA	10		29	12VINA
12VOB	11		28	12VInB
12VGB	12		27	PAUXONB
AUXOB	13		26	AUXINB
AUXGB	14		25	3 V 5 VGB
FAUXB	15		24	5VSB
FLTNB	16		23	5VISENB
PWRONB	17		22	3VSB
M12VGB	18		21	3VISENB
M12VOB	19		20	M12VINB

PIN FUNCTION DESCRIPTION

Pin	Mnemonic	Function
1	M 12VOA	Switched -12V output for channel A. Rated for 100 mA .
2	M 12VGA	Gate of channel A internal NM OS transistor. A capacitor connected from this pin to -12VOA (pin 1) sets the start-up ramp for the +12 V supply. During turn-on, this capacitor is charged from a $25 \mu \mathrm{~A}$ current source.
3	PWRONA	Power on control for channel A. 3.3V CM OS-compatible logic input controls all four main supplies. PWRONA high = outputs on, PWRONA low = outputs off.
4	FLTNA	Active-low, $\mathbf{5 V}$ compatible, Open D rain fault output for channel A. A pull-up resistor connects the pin to 3.3 V Aux. $4.7 \mathrm{k} \Omega$ is recommended for this function. An optional capacitor may be connected from this pin to GND to provide improved immunity to power supply transients.
5	FAUXA	Active-Iow, $\mathbf{3 . 3 V}$ compatible, Open D rain fault output for Aux channel A. The same pull-up resistor as that on FLTNA connects the pin to 3.3VAux.
6	OCSET	Overcurrent set for all 10 outputs. A resistor connected from this pin to ground sets the overcurrent trip point of all eight supplies. All eight overcurrent trip-points can be programmed by changing the value of this resistor. The default value of $6.04 \mathrm{k} \Omega, \pm 1 \%$ is compatible with the maximum currents allowed by the PCI specification.
7	AUXGA	G ate of channel A +3.3VAUX internal PM OS transistor. A capacitor connected from this pin to AUXOA (pin 8) sets the start-up ramp for the +3.3 VAUX supply. During turn-on, this capacitor is charged from a $25 \mu \mathrm{~A}$ current source.
8	AUXOA	Switched 3.3V auxiliary output for channel A. Rated for 0.375A.
9	12 VGA	Gate of channel A internal PM OS transistor. A capacitor connected from this pin to 12VOA (pin 10) sets the start-up ramp for the +12 V supply. During turn-on, this capacitor is charged from a $25 \mu \mathrm{~A}$ current source. The undervoltage circuitry is disabled when the voltage on 12VGA rises above 1.2V. If the capacitor on pin 7 (AUXGA) or pin 33 (3 V 5 VGA) is more than 25% larger than the capacitor on pin 9 (12VGA) a false undervoltage condition may be detected during startup.
10	12 VOA	Switched 12V output for channel A. Rated for 0.5A.
11	12 VOB	Switched 12V output for channel B. Rated for 0.5A.
12	12 VGB	G ate of channel B internal PM OS transistor. A capacitor connected from this pin to 12VOB (pin 11) sets the start-up ramp for the +12 V supply. During turn-on, this capacitor is charged from a $25 \mu \mathrm{~A}$ current source. The undervoltage circuitry is disabled when the voltage on 12 VGB rises above 1.2 V . If the capacitor on the pin 25 ($3 V 5 \mathrm{VGB}$) or pin 14 (AUXGB) is more than 25% larger than the capacitor on pin 12 (12 VGB) a false undervoltage condition may be detected during startup.
13	AUXOB	Switched 3.3V auxiliary output for channel B. Rated for 0.375A.
14	$A \cup X G B$	G ate of channel B +3.3 VAUX internal PM OS transistor. A capacitor connected from this pin to AUXOB (pin 13) sets the start-up ramp for the $+3.3 V A U X$ supply. During turn-on, this capacitor is charged from a $25 \mu \mathrm{~A}$ current source.
15	FAUXB	Active-Iow, $\mathbf{3 . 3 V}$ compatible, O pen D rain fault output for Aux channel B. The same pull-up resistor as that on FLTNA connects the pin to 3.3VAux.
16	FLTNB	Active-low, $\mathbf{5 V}$ compatible, Open Drain fault output for channel B. A pull-up resistor connects the pin to $3.3 \mathrm{VAux} .4.7 \mathrm{k} \Omega$ is recommended for this function. An optional capacitor may be connected from this pin to GND to provide improved immunity to power supply transients.
17	PWRONB	Power on control for channel B. 3.3V CM OS-compatible logic input controls all four main supplies. PWRON B high $=$ outputs on, PWRON B low = outputs off.
18	M 12VGB	G ate of channel B internal NM OS transistor. A capacitor connected from this pin to -12VOB (pin 19) sets the start-up ramp for the +12 V supply. D uring turn-on, this capacitor is charged from a $25 \mu \mathrm{~A}$ current source.
19	M 12VOB	Switched -12V output for channel B. Rated for 100mA.

PIN FUNCTION DESCRIPTION (CONTINUED)
$\left.\begin{array}{|l|l|l|}\hline \text { Pin } & \text { Mnemonic } & \text { Function } \\ \hline 20 & \text { M 12VIN B } & \text {-12V supply input for channel B. Also provides power to the -12V overcurrent circuitry. }\end{array}\left|\begin{array}{l}\text { 3.3V current sense for channel B. A current-sensing resistor is connected between this pin and 3VSB } \\ \text { (pin 22). Connect to the load side of the current sense resistor. }\end{array}\right| \begin{array}{l}\text { 3.3V source for channel B. The source of the 3.3V M O SF ET is connected to this pin and a } \\ \text { current-sensing resistor is connected between this pin and pin 21. }\end{array}\right\}$

CIRCUIT OF ONE CHANNEL SHOWN, BOTH CHANNELS ARE IDENTICAL. RESET AND OCSET CIRCUITRY WITHIN DASHED LINE IS COMMEON TO BOTH CHANNELS
Figure 1. Simplified Schematic

ADM1014

FUNCTIONAL DESCRIPTION

VOLTAGE OUTPUTS

The AD M 1014 consists of two independent, identical channels, A and B, each of which controls four main power supply voltages and an auxiliary voltage. As the channels are identical, the following description applies to either channel, except where otherwise stated.
An on-chip PM OS transistor connected between 12 VIN and 12 VO switches the +12 V supply at currents up to 1.5 A , whilst an on-chip N M OS transistor connected between -12VIN and -12 VO switches the -12 V supply at currents up to 0.38 A . The +3.3 V and +5 V supplies are switched by external, N -channel M OSFET s, whose gate drive is provided by the 3V5VG pins. Using suitable M OSF ETs, singly or in parallel, currents of several amps may be switched with very low voltage drops.
The four main power supplies may be switched on and off under control of the PWRON pin.
The 3.3V auxiliary supply has an on-chip PM OS transistor, which can switch currents at up to 1A. This supply is controlled independently of the other four supplies by the PAUXON pin.
All five supplies are protected against overcurrent and the four positive supplies are also protected against undervoltage.

EXTERNAL CURRENT LIMIT

The external power M OSF ET s are protected and overcurrent shutdown is provided on the +3.3 V and +5 V supplies by external current-sense resistors and on-chip comparators.

Current-sensing resistors are connected between the +5 V output pin and the 5VISEN pin, and between the +3.3 V output pin and the 3.3VISEN pin. T he sense pins are connected to the inverting inputs of the current-limit comparator directly, while the voltage outputs are connected to the non-inverting inputs via a reference voltage proportional to the voltage on the OCSET pin. This voltage is $\mathrm{V}_{\text {OCSET }} / 14.5$ in the case of the 5 V output and $\mathrm{V}_{\text {ocset }} / 11.5$ in the case of the 3.3 V output. These values were chosen so that the 3.3 V and 5 V sense resistors could both be $5 \mathrm{~m} \Omega$ in PCI applications.
When the voltage drop across the current-sensing resistor exceeds the reference voltage, the output of the comparator will go high, the fault latch will be set and all four main outputs and the auxiliary output on the channel will be turned off. The other main channel and auxiliary channel will remain on.
The reference voltages for the current-limit comparators are set by connecting a resistor between the OCSET pin and GND. An on-chip, $100 \mu \mathrm{~A}$ current source generates a voltage across this resistor. The current limit may also be adjusted by the choice of current-sensing resistor.

$$
\begin{aligned}
\mathrm{I}_{\text {LIMIT }}(3.3 \mathrm{~V}) & =\mathrm{V}_{\text {OCSET }} /\left(11.5 \times \mathrm{R}_{\text {SENSE3 }}\right) \\
& =\left(\mathrm{R}_{\text {SET }} \times 10^{-4}\right) /\left(11.5 \times \mathrm{R}_{\text {SENSE3 }}\right) \\
\mathrm{I}_{\text {LIMIT }}(5 \mathrm{~V}) & =\mathrm{V}_{\text {OCSET }} /\left(14.5 \times \mathrm{R}_{\text {SENSE5 }}\right) \\
& =\left(\mathrm{R}_{\text {SET }} \times 10^{-4}\right) /\left(14.5 \times \mathrm{R}_{\text {SENSE5 }}\right)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \mathrm{I}_{\text {LIMIT }}=\text { current limit in Amps } \\
& \mathrm{R}_{\text {SET }} \text { is resistor from OCSET to GND in } \Omega
\end{aligned}
$$

$$
\mathrm{R}_{\text {SENSE }} \text { is current-sense resistor in } \Omega
$$

N ote: The OCSET current source obtains its power supply from 12VINA.

INTERNAL CURRENT LIMIT

The $+3.3 \mathrm{VAUX},+12 \mathrm{~V}$ and -12 V supplies have the power M OSFET switches on-chip. These devices are protected and overcurrent shutdown is provided by a completely self-contained current sensing system. The output current through the on-chip power M OSFET is tracked at a lower level by a second, smaller M OSFET. T he current through this M OSFET is then converted to a voltage, which is compared to a reference voltage determined by $\mathrm{R}_{\mathrm{SET}}$. In the case of the +12 V and -12 V outputs, if the current-sense voltage exceeds this reference voltage, the comparator output will go high, the fault latch will be set and all four main outputs and the auxiliary output will be turned off. Similarly in the case of the auxiliary output, if the currentsense voltage exceeds the reference voltage, the comparator output will go high, the fault latch will be set, FAUXN/FLTN will go low, and the auxiliary output and the four main outputs will turn off.
The typical internal limiting currents may be calculated as follows:

$$
\begin{aligned}
\mathrm{I}_{\text {LIMIT }}(+3.3 \mathrm{VAUX}) & =\mathrm{V}_{\text {OCSET }} / 1.2 \\
& =\left(10-4 \times \mathrm{R}_{\text {SET }}\right) / 1.2 \\
& =1.25 \times \mathrm{V}_{\text {OCSET }} \\
\mathrm{I}_{\text {LIMIT }}(+12 \mathrm{~V}) & =1.25 \times 10-4 \times \mathrm{R}_{\text {SET }} \\
\mathrm{I}_{\text {LIMIT }}(-12 \mathrm{~V}) & =\mathrm{V}_{\text {OCSET }} / 3.3 \\
& =\left(10-4 \times \mathrm{R}_{\text {SET }}\right) / 3.3
\end{aligned}
$$

W here:
$\mathrm{I}_{\text {LIMIT }}=$ current limit in Amps
$\mathrm{R}_{\text {SET }}$ is resistor from OCSET to GND in Ω
D ue to tolerances in the current tracking FET s, the variations in the internal current limit are quite wide, typically $\pm 20 \%$ of the calculated value for the +12 V supply and $+35 /-20 \%$ of the calculated value for the -12 V supply.

CHOICE OF $\mathbf{R}_{\text {SEt }}$ AND $R_{\text {SENSE }}$

U sing the above equations, $\mathrm{R}_{\text {SET }}$ is chosen to set the required current limits for the $+3.3 \mathrm{VAUX},+12 \mathrm{~V}$ and -12 V supplies. Once $R_{\text {SET }}$ has been chosen, $R_{\text {SENSE3 }}$ and $R_{\text {SEN SE5 }}$ can be chosen to set the current limits for the 3.3 V and 5 V outputs.
For PCI applications $\mathrm{R}_{\text {SET }}$ should be $6.04 \mathrm{k} \Omega$ and the current sense resistors should both be $5 \mathrm{~m} \Omega \pm 1 \%$. This will set the current limits to the maximum values for the PCI specification. F or other applications, the following limits should be noted.

1. The minimum value of $R_{S E T}$ is limited by the minimum voltage the current-limit comparators can reliably sense, which is determined by noise, comparator offset voltage and the overdrive required to switch the comparator. The reference voltage set by $\mathrm{R}_{\text {SET }}$ should not be less than 33 mV for the 5 V output, which has the smallest reference voltage. The minimum recommended value for $\mathrm{R}_{\text {SET }}$ is $6 \mathrm{k} \Omega$, which gives a reference voltage of 35 mV for the 5 V output and 45 mV for the 3.3 V output.
2. The maximum value of $R_{\text {SET }}$ is limited by the junction temperature. This is determined by the power dissipated in the onchip M OSFETs, (which is dependent upon the current passed
by the devices and their on-resistance), the thermal resistance of the package $\left(100^{\circ} \mathrm{C} / \mathrm{W}\right)$, and the ambient temperature.
The maximum on-resistance of the +3.3VAUX M OSFET is 0.65Ω, that of the +12 V M OSFET is 0.35Ω and that of the 12 V M OSFET is 0.9Ω, so the power dissipation will be:
$P_{D}=\left(0.65 \times\left(I_{+3.3 V A U X}\right)^{2}+0.35 \times\left(I_{+12 \mathrm{~V}}\right)^{2}+0.9 \times\left(I_{-12 \mathrm{~V}}\right)^{2}\right)$
Where:
P_{D} is power dissipation in W atts
I is current in Amps
U nder normal operating conditions the maximum recommended value for $\mathrm{R}_{\text {SET }}$ is $15 \mathrm{k} \Omega$.

UNDERVOLTAGE SE NSING

U ndervoltage sensing of the $+3.3 \mathrm{~V},+5 \mathrm{~V},+12 \mathrm{~V}$ and +3.3 VAUX supplies is carried out by four voltage comparators. The supply voltages being monitoring are applied to the inverting inputs of these comparators, whilst reference voltages of $2.9 \mathrm{~V}, 4.6 \mathrm{~V}, 10.8 \mathrm{~V}$ and 2.9 V (derived from an on-chip zener reference) are applied to their non-inverting inputs. Should any of the output voltages fall below the corresponding reference voltage, the output of the comparator will go high, the fault latch will be set, turning off all the supplies (main and auxiliary) on that channel.

FLTN AND FAUXN OUTPUTS

The FLTN and FAUXN outputs are active-low, 3.3V compatible, O pen- Drain fault outputs. These outputs are shorted together and then connected to the 3.3 V Aux supply using a $4.7 \mathrm{k} \Omega$ pull-up resistors. Should an overcurrent or undervoltage event occur on one of the supplies, main or auxiliary, then the fault latch will be set, FLTA and FAUXA or FLTB and FAUXB will go low and all outputs on the faulting channel will be turned off.

PROGRAMMABLE FAULT LATCH DELAY

The delay between an overcurrent or undervoltage fault occurring and the outputs shutting down may be set by connecting a capacitor between a FLTN or FAUXN output and GND. This delays the start of the FLTN/FAUXN output 1 to 0 transition and slows down the fall time of the FLTN/FAUXN output, thus delaying shutdown of the outputs. If the fault latch threshold ($\sim 1.6 \mathrm{~V}$) is reached on FLT N/FAUXN then the fault latch will be set and the four supply outputs and the auxiliary output will be shut down. If the fault disappears before the latching threshold is reached, the fault latch will not be set and the FLTN/FAUXN output will return to a high state.
This adjustable delay allows the AD M 1014 to ignore overcurrent and undervoltage transients that might otherwise cause an unwanted shutdown. It should be noted that if a fault is asserted on FLTN and FAUXN at the same time, then the delay is halved, as shown in fig. 2 and T able 1.

Figure 2. FLTN and 3V5VG Delay
TABLE 1. FLT AND 3V5VG DELAY VS. $\mathrm{C}_{\text {FLT }}$

$C_{\text {FLT }}$	t_{A}	$\mathrm{t}_{2 \mathrm{~A}}$
0 PEN	$0.1 \mu \mathrm{~S}$	$0.05 \mu \mathrm{~S}$
$0.001 \mu \mathrm{~F}$	$0.44 \mu \mathrm{~S}$	$0.22 \mu \mathrm{~s}$
$0.01 \mu \mathrm{~F}$	$2.9 \mu \mathrm{~s}$	$1.5 \mu \mathrm{~s}$
$0.1 \mu \mathrm{~F}$	$28 \mu \mathrm{~s}$	$14 \mu \mathrm{~s}$

POWER CONTROL INPUTS

The PWRONA and PWRON B inputs are 3.3V CM OS-compatible logic inputs, which may be used to switch all four main outputs on and off, and is also used to reset the fault latch and turn the outputs back on after an overcurrent or undervoltage shutdown.
When PWRON is high, the four main supplies are turned on. With PWRON held low, the supplies are turned off. After an overcurrent or undervoltage shutdown, PWRON should be toggled low then high again to reset the fault latch and turn on the outputs.
PAUXONA and PAUXONB are also 3.3V CM OS-compatible logic inputs which perform a similar function for the +3.3 V auxiliary supplies.

POWER-ON SEQUENCE AND SOFT START

When the device is powered on with PWRON held high, the outputs are inhibited by the power-on reset circuit and will not become active until V_{Cc} exceeds 10 V . D uring this time the undervoltage comparators are inhibited and the fault latch is held in a reset condition.
N ote: the power-on reset circuit monitors 12VINA.
After the power-on delay, all five outputs are turned on simultaneously. The undervoltage comparators are enabled when the voltage on the gate of the internal PM OS transistor, 12VG, has fallen below about 400 mV .
The rise time of the outputs may be controlled by connecting capacitors between the gate and output pins of the +3.3VAUX, +12 V and -12 V outputs, and from the 3 V 5 VG pin to GND. D uring output turn-on, these capacitors are charged from a nominal $25 \mu \mathrm{~A}$ current source. Limiting the output rise times also limits the charging currents drawn by any supply decoupling capacitors in the circuits being driven. With fast turn-on these currents might be excessive and cause overcurrent faults at power-on.
C are must be taken when choosing these capacitors. If the capacitor on AUXG or 3 V 5 VG is more than 25% larger than

ADM1014

the capacitor on 12 VG , the $+3.3 \mathrm{VAUX}, 3.3 \mathrm{~V}$ and 5 V outputs may not have exceeded their undervoltage thresholds by the time the undervoltage comparators are enabled, and a false undervoltage condition may be detected. For this reason it is recommended to use the same value for all three gate capacitors.
For PCI applications the minimum recommended value is $0.033 \mu \mathrm{~F}$. Smaller values may cause overcurrent faults at powerup due to excessive charging currents drawn by decoupling capacitors.
The maximum value of the gate capacitors is determined by the need to discharge them quickly when turning off the outputs under fault conditions. If the capacitors are too large the AD M 1014 may be unable to protect the power bus or the external M OSFETs. With $0.033 \mu \mathrm{~F}$ capacitors, the turn-off time will be less than $6 \mu s$.

APPLICATIONSINFORMATION

APPLICATION CIRCUIT

Figure 3 shows a typical circuit configuration for the ADM 1014 in a PCI application, controlling supply voltages of +3.3 V at up to $7.6 \mathrm{~A},+5 \mathrm{~V}$ at up to $5 \mathrm{~A},+12 \mathrm{~V}$ at up to 0.5 A and -12 V at up to 0.1A. In this circuit, two external M OSFET s are connected in parallel for the 3.3 V and 5 V outputs to minimise on-resistance.

Figure 3. Typical Application Circuit

Figure 4. Load Board for Typical Application Circuit

Main Board Components			
Item	Qty	Ref Des	Description
1	1	U 1	AD M 1014
2	1	SKT1	38 Pin T ssop Socket
3	4	Q 1-4	IR F 7413 Power M osfet
4	4	D 1-4	Green SM D LED
5	4	R 1-4	$5 \mathrm{~m} \Omega \mathrm{M}$ etal Strip R esistor
6	2	R5-6	$470 \Omega 0805$ chip resistor
7	2	R 7-8	$1 \mathrm{~K} 5 \Omega 0805$ chip resistor
8	2	R9-10	$6 \mathrm{~K} 04 \Omega 0805$ chip resistor
9	8	C 1-8	CAP, 0.033U F
10	4	C 9-12	CAP, 0.47U F
11	3	C 13-15	E lectrolytic capacitor space
12	1	S1	SPDT Slide Switch
13	8	T 1-8	T estpoint
14	2	P1-2	20 Pin Edge C onn Skt
15	4	J1 J4-J6	4mm 10A PCB Sockets-Red
16	1	J2	4mm 10A PCB Sockets-G reen
17	1	J3	4mm 10A PCB Sockets-Black
18	4	P4-7	SM B
19	1	PCB	EVAL-ADM 1014 M ain Board
20	4	R11-12	4K 7 0805 chip resistor
21	2	L oad Board	F ully A ssembled L oad Board

Load B oard C omponents
Item Qty Ref Des Description
$11 \quad$ PCB
23 CL1-CL3
32 CL4-CL5
$411 \quad$ RL1
$5 \quad 1 \quad$ RL2
$61 \quad$ RL3
$\begin{array}{lll}7 & 1 & \text { RL4 }\end{array}$
$81 \quad$ RL5

EVAL-ADM 1014L oad Board
100uF 16V Electrolytic C aps
2200uF 16V Electrolytic C aps
$47 \Omega 6 \mathrm{~W}$ (W 22 Series) Res 240Ω 2.5W (W 21 Series) Res $10 \Omega 6 \mathrm{~W}$ (W 22 Series) Res $2.2 \Omega 12 \mathrm{~W}$ (W24 Series) Res $1 \Omega 12 \mathrm{~W}$ (W 24 Series) Res

LAYOUT CONSIDERATIONS

Any circuits supplied by the ADM 1014 are outside the control loops of the main system power supplies, which means that any series resistance between the four supply inputs and the outputs will cause a degradation of the supply load regulation. This includes connector contact resistance, PCB trace resistance, onresistance of M OSF ETs (both external and on-chip) and current sense resistors.
C are must therefore be taken to ensure that:
a) PCB traces are as heavy as possible.
b) External M OSF ET s have low-on resistance.
c) Current sense resistors are as small as possible.

The current sense resistors have very small values ($5 \mathrm{~m} \Omega$ in the preceding example) to minimise the voltage drop across them. Because of this, PCB trace resistance can be a significant percentage of the sense resistance. It is therefore essential to ensure that the ADM 1014 senses the voltage drop directly across the sense resistors and not across any current-carrying trace resistance in series with them. C onnections from the AD M 1014 to the sense resistors must go directly to the ends of the resistors. Figure 4 shows examples of good and bad practice

Figure 4. Good and Bad Practice For Sense Resistor Connection

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

38-Pin TSSOP (RU-38)

