Quad Ultrahigh-Speed Pin Driver with High-Z and $\mathrm{V}_{\text {TERM }}$ Modes

FEATURES
500 MHz Driver Operation ($1 \mathrm{~Gb} / \mathrm{s}$)
Driver Inhibit Function
100 ps Edge Matching
Guaranteed Industry Specifications
20Ω Output Impedance
5 V/ns Slew Rate
Variable Output Voltages for ECL, TTL, and CMOS
High-Speed Differential Inputs for Maximum Flexibility
Ultrasmall 100-Lead LOFP Package with Built-In Heat Sink

APPLICATIONS
Automatic Test Equipment
Semiconductor Test Systems
Board Test Systems
Instrumentation and Characterization Equipment

PRODUCT DESCRIPTION

The AD53513 is a quad high-speed pin driver designed for use in digital or mixed-signal test systems. Combining a high-speed monolithic process with a convenient surface-mount package, this product attains superb electrical performance while preserving optimum packaging densities and long-term reliability in a 100-lead, LQFP package with built-in heat sink.
Featuring unity gain programmable output levels of -2.5 V to +5.5 V , with output swing capability of less than 200 mV to 8 V , the AD53513 is designed to stimulate ECL, TTL, and CMOS logic families, as well as high-speed memory. The $1.0 \mathrm{~Gb} / \mathrm{s}$ data rate capacity and matched output impedance allow for real-time stimulation of these digital logic families. To test I/O devices, the pin driver can be switched into a high impedance state (Inhibit Mode), electrically removing the driver from the path. The pin driver leakage current in inhibit is typically 100 nA and output charge transfer entering inhibit is typically less than 20 pC .
The AD53513 transition from HI/LO or to inhibit is controlled through the data and inhibit inputs. The input circuitry uses high-speed differential inputs with a common-mode range of $\pm 2 \mathrm{~V}$. This allows for direct interface to precision differential ECL timing. The analog logic HI/LO inputs are equally easy to interface. Typically requiring $10 \mu \mathrm{~A}$ of bias current, the AD53513 can be directly coupled to the output of a digital-to-analog converter.
Each channel of the AD53513 has a Mode Select Pin RLD, which is a single-sided logic input. The logic threshold is set by

REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

the VBB input which is common to all four channels. The RLD Mode Select controls whether inhibit puts the driver in High-Z or $\mathrm{V}_{\text {TERM }}$ mode. (Refer to Table I.) All of the digital logic inputs (DATA, DATAB, INH, INHB, RLD, VBB), must share a common set of logic levels. The VBB threshold should be set to the midrange of the logic levels. For example, if ECL levels of -0.8 V to -1.8 V are used, VBB should be set to -1.3 V .
The AD53513 is available in a 100 -lead, LQFP package with a built-in heat sink and is specified to operate over the ambient commercial temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
(All specifications are at $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},+\mathrm{V}_{S}=+9 \mathrm{~V} \pm 3 \%,-V_{S}=-6 \mathrm{~V} \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}$). (A 39 nF capacitor must be connected between $\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {HDCPL }}$ and between $\mathrm{V}_{\text {EE }}$ and $\mathrm{V}_{\text {LDCPL. }}$.)

Parameter	Min	Typ*	Max	Unit	Test Conditions
DYNAMIC PERFORMANCE, INHIBIT Delay Time, Active to Inhibit Delay Time, Inhibit to Active I/O Spike Output Capacitance	$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & <200 \\ & 6 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{pF} \end{aligned}$	Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V}$ Driver Inhibited
DYNAMIC PERFORMANCE, $\mathrm{V}_{\text {TERM }}$ Delay Time, Active to $\mathrm{V}_{\text {TERM }}$ Delay Time, $\mathrm{V}_{\text {TERM }}$ to Active Overshoot, Undershoot, and Preshoot $\mathrm{V}_{\text {TERM }}$ to V_{L} or V_{H}	$\begin{aligned} & 0.50 \\ & 0.45 \end{aligned}$	$\pm 6 \% / \pm 75$	$\begin{aligned} & 1.30 \\ & 1.25 \end{aligned}$	ns ns mV	Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}$ 50Ω Terminated $\begin{aligned} & \mathrm{V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=-0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \end{aligned}$ Output Terminated 50Ω
POWER SUPPLIES Total Supply Range Positive Supply Negative Supply Positive Supply Current Negative Supply Current Total Power Dissipation Temperature Sensor Gain Factor		$\begin{aligned} & 15 \\ & 9 \\ & -6 \\ & \\ & 1.0 \end{aligned}$	$\begin{aligned} & 570 \\ & 570 \\ & 8.6 \end{aligned}$	V V V mA mA W $\mu \mathrm{A} / \mathrm{K}$	$\mathrm{R}_{\text {LOAD }}=4.2 \mathrm{k} \Omega, \mathrm{V}_{\text {SOURCE }}=9 \mathrm{~V}$

NOTES
Connecting or shorting the decoupling capacitors to ground will result in the destruction of the device.
*Typical parameters are not production tested but guaranteed through characterization.
Specifications subject to change without notice.

```
ABSOLUTE MAXIMUM RATINGS }\mp@subsup{}{}{1
Power Supply Voltage
```



```
    -V to GND ................................... - 7 V
    +V}\mp@subsup{\textrm{V}}{\mathrm{ to - }\mp@subsup{\textrm{V}}{S}{}.\ldots................................... 18 V}{\textrm{V}
Inputs
    DATA, \overline{DATA}, INH, \overline{INH, RLD, VBB . . . . . . +5 V, -3 V}
    DATA to DATA, INH to INH, RLD, VBB ......... \pm3 V
    \mp@subsup{V}{H}{},\mp@subsup{V}{L}{},\mp@subsup{V}{T}{}\mathrm{ to GND .......................7 V, -2 V}
    \mp@subsup{V}{H}{}}\mathrm{ to }\mp@subsup{\textrm{V}}{\textrm{L}}{}(\mp@subsup{\textrm{V}}{\textrm{H}}{}-\mp@subsup{\textrm{V}}{\textrm{T}}{})\mathrm{ and ( (V
Outputs
    V Vut Short Circuit Duration ................ Indefinite }\mp@subsup{}{}{2
V Out Range in Inhibit Mode
    V HDCPL .... . Do Not Connect Except for Capacitor to V VC
    V VDCpL ..... Do Not Connect Except for Capacitor to V VE
    THERM ..................................... 11 V, 0 V
```


ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Power Supply Voltage

+ V_{s} to GND 11 V
$-\mathrm{V}_{\mathrm{S}}$ to GND -7 V

Inputs
DATA, $\overline{\text { DATA }}$, INH, $\overline{\text { INH, }}$, RLD, VBB $+5 \mathrm{~V},-3 \mathrm{~V}$

$\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{T}}$ to GND
V_{H} to $\mathrm{V}_{\mathrm{L}}\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{T}}\right)$ and $\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{L}}\right) \ldots \ldots \ldots \ldots \ldots . . \pm 9 \mathrm{~V}$
Outputs
$\mathrm{V}_{\text {OUT }}$ Short Circuit Duration Indefinite ${ }^{2}$
$V_{\text {out }}$ Range in Inhibit Mode
Car
THERM $11 \mathrm{~V}, 0 \mathrm{~V}$

Environmental

Operating Temperature (Junction) $175^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)^{3}$. $260^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Output short circuit protection is guaranteed as long as proper heat sinking is employed to ensure compliance with the operating temperature limits.
${ }^{3}$ To ensure lead coplanarity (± 0.002 inches) and solderability, handling with bare hands should be avoided and the device should be stored in environments at $24^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F} \pm 10^{\circ} \mathrm{F}\right)$ with relative humidity not to exceed 65%.

ORDERING GUIDE

Model	Package Description	Shipment Method, Quantity Per Shipping Container	Package Option
AD53513JSQ	100-Lead LQFP-CDQUAD	Tray, 90 Pieces	SQ-100

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53513 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

Table I. Driver Truth Table

DATA	$\overline{\text { DATA }}$	INH	$\overline{\text { INH }}$	RLD	VBB	Output State
0	1	0	1	X	VBB	V_{L}
1	0	0	1	X	VBB	V_{H}
X	X	1	0	0	VBB	INH
X	X	1	0	1	VBB	$\mathrm{V}_{\text {TERM }}$

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
100-Lead LQFP_ED Package (SQ-100)

