ANALOG DEVICES

Quad 12-Bit Microprocessor-Compatible D/A Converter

AD390*

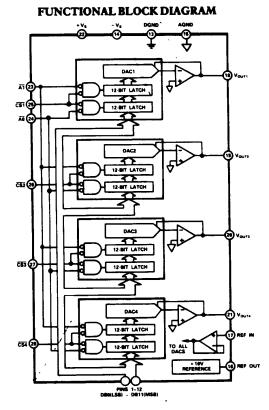
2

FEATURES

Four Complete 12-Bit DACs in One IC Package Linearity Error ± 1/2LSB T_{min} - T_{max} (AD390K, T) Factory-Trimmed Gain and Offset Buffered Voltage Output Monotonicity Guaranteed Over Full Temperature Range Double-Buffered Data Latches Includes Reference and Buffer Fast Settling: 8µs max to ± 1/2LSB

PRODUCT DESCRIPTION

The AD390 contains four 12-bit high speed voltage-output digital-to-analog converters in a compact 28-pin hybrid package. The design is based on a proprietary latched 12-bit DAC chip which reduces chip count and provides high reliability. The AD390 is ideal for systems requiring digital control of many analog voltages where board space is at a premium. Such applications include automatic test equipment, process controllers, and vector-scan displays.


The AD390 is laser-trimmed to $\pm 1/2$ LSB max nonlinearity (AD390KD, TD) and absolute accuracy of ± 0.05 percent of full scale. The high initial accuracy is made possible by the use of thin-film scaling resistors on the monolithic DAC chips. The internal buried Zener voltage reference provides excellent temperature drift characteristics (20ppm/°C) and an initial tolerance of $\pm 0.03\%$ maximum. The internal reference buffer allows a single common reference to be used for multiple AD390 devices in large systems.

The individual DACs are accessed by the $\overline{CS1}$ through $\overline{CS4}$ control inputs and the $\overline{A0}$ and $\overline{A1}$ lines. These control signals permit the registers of the four DACs to be loaded sequentially and the outputs to be simultaneously updated.

The AD390 outputs are calibrated for a $\pm 10V$ output range with positive-true offset binary input coding. A 0 to + 10Vversion is available on special order.

The AD390 is packaged in a 28-lead ceramic package and is specified for operation over the 0 to $+70^{\circ}$ C and -55° C to $+125^{\circ}$ C temperature range.

*Protected by patent numbers 3,803,590; 3,890,611; 3,932,863; 3,978,473; 4,020,486 and other patents pending.

PRODUCT HIGHLIGHTS

- The AD390 offers a dramatic reduction in printed circuit board space requirements in systems using multiple DACs.
- Each DAC is independently addressable, providing a versatile control architecture for simple interface to microprocessors. All latch enable signals are level-triggered.
- 3. The output voltage is trimmed to a full scale accuracy of $\pm 0.05\%$. Settling time to $\pm 1/2$ LSB is 8 microseconds maximum.
- 4. An internal 10 volt reference is available or an external reference can be used. With an external reference, the AD390 gain TC is ± 5ppm/°C maximum.
- The proprietary monolithic DAC chips provide excellent linearity and guaranteed monotonicity over the full operating temperature fange.
- 6. The 28-pin double-width hybrid package provides extremely high functional density. No external components or adjustments are required to provide the complete function.
- The AD390SD and AD390TD feature guaranteed accuracy and linearity over the -55°C to +125°C temperature range.

AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V \text{ unless otherwise indicated, specifications guaranteed after 10 minute warmup)}$

Model	AD390JD/SD			AD390KD/TD			
	Min	Тур	Max	Min	Тур	Max	Units
DATA INPUTS (Pins 1-12 and 23-28) ¹ TTL or 5 Volt CMOS Input Voltage							
Bit ON (Logic "1") Bit OFF (Logic "0") Input Current (Pin 24 is 3 × Larger)	+ 2.0		+ 5.5 + 0.8	+2.0		+ 5.5 + 0.8	v v
Bit ON (Logic "1") Bit OFF (Logic "0")		500 150	1200 400		500 150	1200 409	μА μ Λ
RESOLUTION			12			12	Bits
OUTPUT ² Voltage Range ³ Current Settling Time (to ± ½LSB)	5	4	± 10 8	5	4	±10 8	V mA µs
ACCURACY Gain Error (w/ext. 10.000V reference) Offset Linearity Error Differential Linearity Error		± 0.05 ± 0.025 $\pm 1/4$ $\pm 1/2$	±0.1 ±0.05 ±3/4 ±3/4		± 0.025 ± 0.012 ± 1/8 ± 1/4	±0.05 ±0.025 ±1/2 ±1/2	% of FSR ⁴ % of FSR LSB LSB
TEMPERATURE DRIFT Gain (internal reference) (external reference) Zero Linearity Error T _{min} – T _{max} Differential Linearity MONO	FONICITY	± 1/2 GUARANT	± 40 ± 10 ± 10 ± 3/4 EED OVER	FULL TEN	± 1/4 APERATURI	± 20 ± 5 ± 5 ± 1/2 ERANGE	ppm/°C ppm/°C ppm/°C LSB
CROSSTALK ⁵		0.1			0.1		LSB
REFERENCE OUTPUT Voltage (without load) Current (available for external use)	9.997 2.5	10.000 3.5	10.003	9.997 2.5	10.000 3.5	10.003	V mA
REFERENCE INPUT Input Resistance Voltage Range	5	10 ¹⁰	11	5	10 ¹⁰	11	Ω V
POWER REQUIREMENTS Voltage ⁶ Current	±13.5	±15	± 16.5	±13.5	±15	± 16.5	v
+ V _s - V _s		20 - 85	35 - 100		20 - 85	35 - 100	mA mA
POWER SUPPLY GAIN SENSITIVITY + V _S - V _S		0.002 0.0025	0.006 0.006		0.002 0.0025	0.006 0.006	%FS/% %FS/%
TEMPERATURE RANGE Operating (Full Specifications) J, K S, T Storage	0 - 55 - 65		+ 70 + 125 + 150	0 55 65		+ 70 + 125 + 150	ະ ເ ເ

NOTES

¹Timing specifications appear in Table 2.

³ The AD390 outputs are guaranteed stable for load capacitances up to 300pF. ³ ± 10V range is standard. A 0 to 10V version is also available. To order, use the following part numbers:

AD50207-1 J Grade

- AD50207-2 K Grade
- AD50207-3 S Grade AD50207-4 T Grade
- AD50207-7 S/883B Grade
- AD50207-8 T/883B Grade

⁵Crosstalk is defined as the change in any one output as a result of any other output being driven from - 10V to + 10V into a 2kΩ load. The AD390 can be used with supply voltage as low as $\pm 11.4V$, Figure 10.

Specifications subject to change without notice.

2-24 DIGITAL-TO-ANALOG CONVERTERS

ć

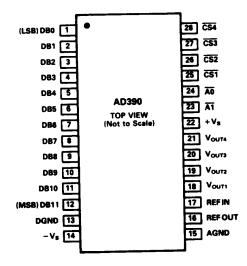
⁴FSR means Full Scale Range and is equal to 20V for a \pm 10V range.

ABSOLUTE MAXIMUM RATINGS

 $+V_{s}$ to DGND 0 to +18V- Vs to DGND 0 to -18V Digital Inputs (Pins 1-12, 23-28) to DGND - 1 to +7V Ref In to DGND $\dots \pm V_S$

Analog Outputs (Pins 16, 18-21)

Momentary Short to $\pm V_S$


Lead Temperature (Soldering, 10 Seconds) + 300°C

ORDERING GUIDE

Model	Temperature	Gain Error	Linearity Error	Package
	Range	25°C	Tmin - Tmax	Option*
AD390JD	0 to + 70°C	± 4LSB	± 3/4LSB	DH-28
AD390KD	0 to + 70°C	± 2LSB	± 1/2LSB	DH-28
AD390SD	- 55°C to + 125°C	± 4LSB	± 3/4LSB	DH-28
AD390TD	- 55°C to + 125°C	± 2LSB	± 1/2LSB	DH-28

*DH-28 = Side Brazed Ceramic DIP for Hybrid. For outline information see Package Information section.

PIN CONFIGURATION

