

APT10026L2FLL

1000V 38A 0.260Ω

POWER MOS 7™

FREDFET

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS(ON)}}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

• Lower Input Capacitance

Increased Power Dissipation

• Lower Miller Capacitance

Easier To Drive

Lower Gate Charge, Qg

MAXIMUM RATINGS

Popular TO-264 MAX Package

Symbol	Parameter	APT10026L2FLL	UNIT	
V _{DSS}	Drain-Source Voltage	1000	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	38	Amne	
I _{DM}	Pulsed Drain Current (1)	152	Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	Valta	
V _{GSM}	Gate-Source Voltage Transient	±40	Volts	
P _D	Total Power Dissipation @ T _C = 25°C	890	Watts	
, D	Linear Derating Factor	7.12	W/°C	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300] ~	
I _{AR}	Avalanche Current (1) (Repetitive and Non-Repetitive)	38	Amps	
E _{AR}	Repetitive Avalanche Energy 1	50		
E _{AS}	Single Pulse Avalanche Energy 4	3200	- mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$	1000			Volts
I _{D(on)}	On State Drain Current $② (V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	38			Amps
R _{DS(on)}	Drain-Source On-State Resistance (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.260	Ohms
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			250	μА
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			1000	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 5mA)$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA 405 S.W. Columbia Street Bend, Oregon 97702-1035 Phone: (541) 382-8028 FAX: (541) 388-0364 EUROPE Chemin de Magret F-33700 Merignac - France Phone: (33) 5 57 92 15 15 FAX: (33) 5 56 47 97 61

DYNAMIC CHARACTERISTICS

APT10026L2FLL

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		7680		
C _{oss}	Output Capacitance	V _{DS} = 25V		1270		pF
C_{rss}	Reverse Transfer Capacitance	f = 1 MHz		252		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		294		
Q_{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		45		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		196		
t _d (on)	Turn-on Delay Time	V _{GS} = 15V		17		
tr	Rise Time	$V_{DD} = 0.5 V_{DSS}$		8		ns
t _d (off)	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		39		113
t _f	Fall Time	$R_G = 0.6\Omega$		9		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I _S	Continuous Source Current (Body Diode)				38 152 Amps	
I _{SM}	Pulsed Source Current (Body Diode)					
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _D [Cont.])				1.3	Volts
dv/ _{dt}	Peak Diode Recovery dv/dt (5)				18	V/ns
	Reverse Recovery Time	T _j = 25°C			310	20
t _{rr}	$(I_S = -I_D [Cont.], \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C			625	ns
	Reverse Recovery Charge	T _j = 25°C		2.0		
Q_{rr}	$(I_S = -I_D [Cont.], \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C		6.0		μC
I _{RRM}	Peak Recovery Current	T _j = 25°C		15		A
	$(I_S = -I_D [Cont.], \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C		2.6		Amps

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.14	
$R_{\theta,IA}$	Junction to Ambient			40	°C/W

① Repetitive Rating: Pulse width limited by maximum junction temperature.

APT Reserves the right to change, without notice, the specifications and information contained herein.

TO-264 MAX™(L2) Package Outline

Dimensions in Millimeters and (Inches)

② Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%

③ See MIL-STD-750 Method 3471

 $[\]bigcirc$ Starting T_j = +25°C, L = 4.43mH, R_G = 25Ω, Peak I_L = 38A

⁽⁵⁾ $dv/_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_{D[Cont.]}$ $di/_{dt} \le 700A/\mu s$ $V_R \le V_{DSS}$ $T_J \le 150^{\circ}C$