

269-Type 14xx nm Pump Laser Module with Fiber Grating

Offering superior wavelength stability, the 269-type pump laser module with fiber grating is designed as a continuous-wave (CW) optical pump source for erbium-doped fiber amplifiers and Raman pump modules.

Features

- High-coupled rated output power up to 280 mW, CW
- Available with fiber grating for wavelength stability (1420 nm—1510 nm)
- Wide environmental range
- Field-proven packaging technology
- InGaAsP/InP high-power, strained multiple quantum-well (MQW) chip design
- Internal thermoelectric cooler (TEC)
- InGaAs PIN photodetector back-facet monitor
- Single-mode and polarization-maintaining fiber pigtails
- Compact, 14-pin butterfly package
- Industry compatible package and pinout

Applications

- Raman pump modules (RPM)
- Erbium-doped fiber amplifiers (EDFA)

Description

The 269-type pump laser module with fiber grating represents a family of thermoelectrically cooled, high-power lasers. These modules utilize a fiber Bragg grating to achieve stable wavelength performance within the 1420 nm to 1510 nm range, over the full operating temperature range. They are designed as continuous-wave (CW) optical pump sources for dense wavelength-division multiplexing (DWDM) EDFA and Raman applications operating in the C- and L-bands. The 269-type laser modules with polarization-maintaining fiber are particularly suitable for use in RPM designs requiring the high-power combinations of multiple pumps.

The laser optical spectrum is locked by the fiber grating over a wide optical power range. The optical spectrum is very narrow and the peak wavelength is nearly insensitive to temperature variations and back reflections.

The laser modules incorporate a high-power, quantum-well laser chip that achieves grating-stabilized fiber powers ranging to 280 mW.

An integral thermoelectric cooler (TEC) stabilizes the laser at room temperature and, combined with a hermetic environment, allows the device to achieve high-power operation over the extended temperature range of 0 °C to 75 °C. An internal InGaAs PIN photodiode, mounted behind the laser diode, functions as the laser detector and monitors light emissions from the rear facet of the laser.

The 269-type module is offered in a 14-pin, hermetic butterfly package.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Operating Case Temperature Range	Tc	0	75	°C
Storage Case Temperature Range	Tstg	-40	85	°C
Laser Forward Bias (TEC on):	lF			
Po = 120 mW—150 mW		_	1000	mA
Po = 160 mW—210 mW		_	1500	mA
Po = 220 mW—280 mW		_	1900	mA
Laser Reverse Voltage	VR	_	2	V
Photodiode Reverse Voltage	VRMON	_	20	V
TEC Current	ITEC	_	2.2	Α
TEC Voltage	VTEC	_	5.0	V
Temperature Sensor Current	ITS	_	5	mA
Laser Diode Operating Chip Temperature	TLD	_	40	°C

Handling Precautions

Electrostatic Discharge

CAUTION: This device is susceptible to damage as a result of electrostatic discharge (ESD). Take proper precautions during both handling and testing. Follow guidelines such as *EIA** Standard *EIA* 625.

Agere Systems Inc. employs a human-body model (HBM) for ESD-susceptibility testing and protection-design evaluation. ESD voltage thresholds are dependent on the critical parameters used to define the model. A standard HBM (resistance = 1.5 k Ω , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD withstand voltage established for the 269-type laser pump module is ± 500 V.

 $^{^{\}ast}$ EIA is a registered trademark of The Electronic Industries Association.

Electrical/Optical Characteristics

Table 1. Electrical/Optical Characteristics (All performance parameters are specified for IF, OP, TSET = 25 °C, TCASE ~ 25 °C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Optical Power	Po	_	120	_	280	mW
Wavelength:						
Target Wavelength	λt	_	1420	_	1510	nm
Center Wavelength	λc	0 °C—70 °C	λt – 1.5	_	λt + 1.5	nm
RMS Spectral Width	Δλ	Po	_	_	1.5	nm
BOL Operating Laser Forward Current:	IF, OP BOL					
Po = 120 mW		_	_	_	550	mA
Po = 130 mW		_	_	_	600	mA
Po = 140 mW		_	_	_	600	mΑ
Po = 150 mW		_	_	_	600	mA
BOL Operating Laser Forward Current:	IF, OP BOL					
Po = 160 mW					650	mA
Po = 170 mW		_	_	_	700	mA
Po = 180 mW		_	_	_	700	mA
Po = 190 mW		_	_	_	750	mA
Po = 200 mW		-	_	_	800	mA
BOL Operating Laser Forward Current:	IF, OP BOL					
Po = 210 mW		_	_	_	850	mA
Po = 220 mW		_	_		900	mA
Po = 230 mW		_	_	_	950	mA
Po = 240 mW		_	_	_	1000	mA
Po = 250 mW		_	_	_	1000	mA
Po = 260 mW		_	_		1100	mA
Po = 270 mW		_	_	_	1100	mA
Po = 280 mW		<u> </u>	_		1100	mA
EOL Operating Laser Forward Current	IF, OP EOL	_	_	_	1.15 x	mA
					IF, OP BOL	
EOL Laser Diode Forward Voltage	VR	IF, OP EOL	_	2.3	3.0	V
Polarization Extinction Ratio	PER	_	13		_	dB

Table 2. Monitor Photodiode Characteristics (All test parameters are specified for IF, OP, TSET = 25 °C, TCASE ~ 25 °C unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Max	Unit
Monitor Diode Current	lbF		200	2000	μΑ
Monitor Diode Dark Current	ΙD	VR = -5 V, IF = 0		100	nA

Electrical/Optical Characteristics (continued)

Table 3. TEC and Thermistor Characteristics (All performance parameters are specified for IF, OP, TSET = 25 °C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Max	Unit
TEC Current:	ITEC	TSET = 25 °C;			
Po = 120 mW		TCASE = 75 °C;	_	1.6	Α
Po = 130 mW		$\Delta T = 50 ^{\circ}\text{C}, \text{EOL}$	_	1.6	Α
Po = 140 mW			_	1.6	Α
Po = 150 mW			_	1.6	Α
TEC Current:	ITEC	TSET = 25 °C;			
Po = 160 mW		TCASE = 70 °C;	_	1.7	Α
Po = 170 mW		$\Delta T = 45 ^{\circ}C$, EOL	_	1.7	Α
Po = 180 mW			_	1.7	Α
Po = 190 mW			_	1.7	Α
Po = 200 mW			_	1.7	Α
TEC Current:	ITEC	TSET = 25 °C;			
Po = 210 mW		TCASE = 65 °C;	_	2.0	Α
Po = 220 mW		$\Delta T = 40 ^{\circ}\text{C}, \text{EOL}$	_	2.0	Α
Po = 230 mW		,	_	2.0	Α
Po = 240 mW			_	2.0	Α
Po = 250 mW			_	2.0	Α
Po = 260 mW			_	2.0	Α
Po = 270 mW			_	2.0	Α
Po = 280 mW			_	2.0	Α
TEC Voltage:	VTEC	TSET = 25 °C;			
Po = 120 mW		TCASE = 75 °C;		3.5	V
Po = 130 mW		$\Delta T = 50 ^{\circ}\text{C}, \text{EOL}$		3.5	V
Po = 140 mW		_, _, _, _, _,		3.5	V
Po = 150 mW			_	3.5	V
TEC Voltage:	VTEC	TSET = 25 °C;			
Po = 160 mW		TCASE = 70 °C;	_	3.7	V
Po = 170 mW		$\Delta T = 45 ^{\circ}\text{C}, \text{EOL}$		3.7	V
Po = 180 mW		_, _, _, _, _,		3.7	V
Po = 190 mW				3.7	V
Po = 200 mW			_	3.7	V
TEC Voltage:	VTEC	TSET = 25 °C;			
Po = 210 mW		TCASE = $65 ^{\circ}$ C;	_	4.2	V
Po = 220 mW		$\Delta T = 40 ^{\circ}\text{C}, \text{EOL}$	_	4.2	V
Po = 230 mW			_	4.2	V
Po = 240 mW			_	4.2	V
Po = 250 mW			_	4.2	V
Po = 260 mW			_	4.2	V
Po = 270 mW			_	4.2	V
Po = 280 mW			_	4.2	V
Thermistor Resistance	RTHERM	25 °C Laser Diode Set Temperature	9.5	10.5	kΩ
Themistor B Constant	В	—	3700	4100	K

User Information

Table 4. Pin Information

Pin Number	Connection
1	TE Cooler (+)*
2	Thermistor
3	Monitor Anode (-Bias)
4	Monitor Cathode (+Bias)
5	Thermistor
6	No Connect
7	No Connect
8	No Connect
9	No Connect
10	Laser Anode (+)
11	Laser Cathode (–)
12	No Connect
13	Package Ground
14	TEC Cooler (–)

^{*} A positive input into this pin cools the laser.

Fiber Characteristics

- Length of fiber pigtail:
 - $-1.75 \text{ m} \pm 0.25 \text{ m}$
- Length of fiber pigtail to end of grating:
 - 0.86 m \pm 0.14 m
- Standard fiber:
 - Cladding OD: 125 μm ± 2 μm— Acrylate buffer OD: 250 μm ± 15 μm
 - Cut off wavelength: <1320 nm</p>
- Polarization-maintaining fiber:
 - PANDA
 - Cut off wavelength: <1400 nm— Acrylate buffer: 400 μm

Mounting and Connections

CAUTION: This device is susceptible to damage as a result of electrostatic discharge.

Proper precautions should be taken during both handling and testing.

The base of the laser module (see Outline Diagram) should be maintained at or below 75 °C (maximum) during operation. Interfaces between the laser module base and heat sink must be clean, and the use of a thermal filler may be necessary.

Mounting Instructions

The minimum fiber bend radius is 1.0 in.

To avoid degradation in performance, mount the module on the board as follows:

- 1. Place the bottom flange of the module on a flat heat sink at least 0.5 in. x 1.180 in. (12.7 mm x 30 mm) in size. The surface finish of the heat sink should be better than 32 $\mu in.$ (0.8 μm), and the surface flatness must be better than 0.001 in. (25.4 μm). Using thermal conductive grease is optional; however, thermal performance may be improved if conductive grease is applied between the bottom flange and the heat sink.
- Mount four #2-56 screws with Fillister heads (M2-3 mm) at the four screw hole locations (see Outline Diagram). The Fillister head diameter must not exceed 0.140 in. (3.55 mm). Do not apply more than 1 in./lb. of torque to the screws.

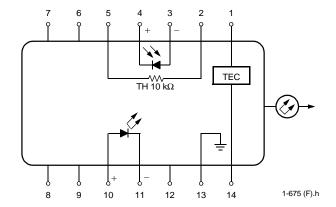
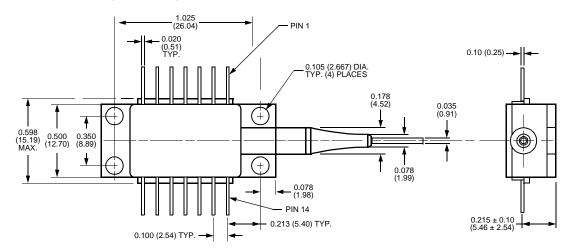
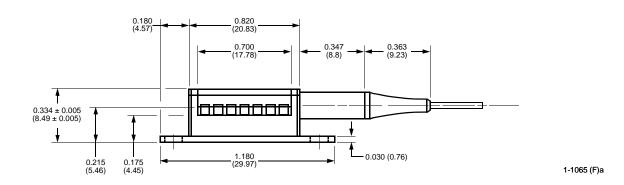




Figure 1. Circuit Schematic

Outline Diagram

Dimensions are in inches and (millimeters).

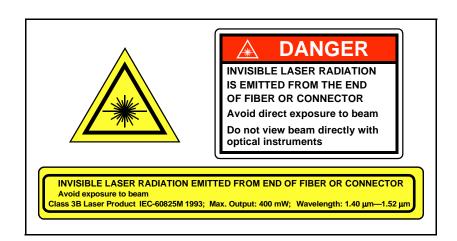
Laser Safety Information

Class IIIb Laser Product

FDA/CDRH Class IIIb laser product. All versions are Class IIIb laser products per CDRH, 21 CFR 1040 Laser Safety requirements. All versions are Class IIIb laser products per *IEC** 60825-1:1993. The device has been classified with the FDA under accession number 8720010.

This product complies with 21 CFR 1040.10 and 1040.11.

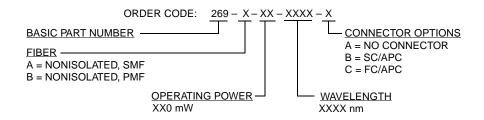
8.8 μm/125 μm single-mode fiber pigtail (see Fiber Characteristics, page 5).


Wavelength = $1.40 \mu m$ — $1.52 \mu m$.

Maximum power = 400 mW.

Because of size constraints, laser safety labeling (including an FDA Class IIIb label) is not affixed to the module but attached to the outside of the shipping carton.

Product is not shipped with power supply.


Caution: Use of controls, adjustments, and procedures other than those specified herein may result in hazardous laser radiation exposure.

 $^{^{\}star}$ IEC is a registered trademark of The International Electrotechnical Commission.

Ordering Information

Device Code Information

For additional information, contact your Agere Systems Account Manager or the following:

INTERNET: http://www.agere.com

E-MAIL: docmaster@micro.lucent.com

N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495

CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC

Tel. (86) 21 50471212, FAX (86) 21 50472266 Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan

Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 EUROPE:

Technical Inquiries: OPTOELECTRONICS MARKETING: (44) 1344 865 900 (Ascot UK)

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.

JAPAN: