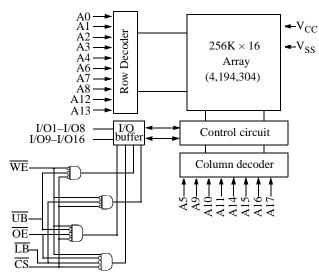
October 2000

2.3V to 3.6V 256K×16 IntelliwattTM low-power CMOS SRAM with one chip enable


'Features

- AS6UA25616
- IntelliwattTM active power circuitry
- Industrial and commercial temperature ranges available
- Organization: 262,144 words x 16 bits
- 2.7V to 3.6V at 55 ns
 2.3V to 2.7V at 70 ns
- Low power consumption: ACTIVE - 114 mW at 3.6V and 55 ns
 - 68 mW at 2.7V and 70 ns

Logic block diagram

- Low power consumption: STANDBY
- $72 \mu W$ max at 3.6 V
- 41 µW max at 2.7V
- 1.2V data retention
- · Equal access and cycle times
- Easy memory expansion with \overline{CS} , \overline{OE} inputs
- Smallest footprint packages - 48-ball FBGA
- 400-mil 44-pin TSOP II
- ESD protection \geq 2000 volts
- Latch-up current $\geq 200 \text{ mA}$

Pin arrangement (top view)

44-pin 400-1	mil TSOP II
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44 A5 43 A6 42 A7 41 OE 40 IIB 39 I/O16 37 I/O15 36 I/O13 34 VSS 32 I/O11 30 I/O12 31 I/O10 29 I/O9 28 NC 27 A8 26 A10 24 A11 23 A12

	1	2	3	4	5	6
А	LB	OE	A0	A1	A2	NC
В	I/O9	UB	A3	A4	CS	I/01
С	I/O10	I/011	A5	A6	I/O2	I/O3
D	V _{SS}	I/O12	A17	A7	I/O4	V _{CC}
Е	V _{CC}	I/013	NC	A16	I/O5	V _{SS}
F	I/O15	I/014	A14	A15	I/06	I/07
G	I/O16	NC	A12	A13	WE	I/08
Н	NC	A8	A9	A10	A11	NC

Selection guide

		V _{CC} Range			Power Dissipation		
	Min	Typ ²	Max	Speed	Operating (I _{CC})	Standby (I _{SB1})	
Product	(V)	(V)	(V)	(ns)	Max (mA)	Max (µA)	
AS6UA25616	2.7	3.0	3.6	55	2	20	
AS6UA25616	2.3	2.5	2.7	70	1	15	

ALLIANCE SEMICONDUCTOR

1

Functional description

The AS6UA25616 is a low-power CMOS 4,194,304-bit Static Random Access Memory (SRAM) device organized as 262,144 words x 16 bits. It is designed for memory applications where slow data access, low power, and simple interfacing are desired.

Equal address access and cycle times (t_{AA} , t_{RC} , t_{WC}) of 55/70 ns are ideal for low-power applications. Active high and low chip enables (\overline{CS}) permit easy memory expansion with multiple-bank memory systems.

When \overline{CS} is high, or \overline{UB} and \overline{LB} are high, the device enters standby mode: the AS6UA25616 is guaranteed not to exceed 72 µW power consumption at 3.6V and 55 ns; 41µW at 2.7V and 70 ns. The device also returns data when V_{CC} is reduced to 1.5V for even lower power consumption.

A write cycle is accomplished by asserting write enable (\overline{WE}) and chip enable (\overline{CS}) low, and \overline{UB} and/or \overline{LB} low. Data on the input pins I/O1–O16 is written on the rising edge of \overline{WE} (write cycle 1) or \overline{CS} (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable (\overline{OE}) or write enable (\overline{WE}).

A read cycle is accomplished by asserting output enable (\overline{OE}) , chip enable (\overline{CS}) , \overline{UB} and \overline{LB} low, with write enable (\overline{WE}) high. The chip drives I/O pins with the data word referenced by the input address. When either chip enable or output enable is inactive, or write enable is active, or (\overline{UB}) and (\overline{LB}) , output drivers stay in high-impedance mode.

These devices provide multiple center power and ground pins, and separate byte enable controls, allowing individual bytes to bewritten and read. \overline{LB} controls the lower bits, I/O1–I/O8, and \overline{UB} controls the higher bits, I/O9–I/O16.

All chip inputs and outputs are CMOS-compatible, and operation is from a single 2.3V to 3.6V supply. Device is available in the JEDEC standard 400-mm, TSOP II, and 48-ball FBGA packages.

Absolute maximum ratings

Parameter	Device	Symbol	Min	Max	Unit
Voltage on V _{CC} relative to V _{SS}		V _{tIN}	-0.5	V _{CC} + 0.5	V
Voltage on any I/O pin relative to GND		V _{tI/O}	-0.5		V
Power dissipation		P _D	_	1.0	W
Storage temperature (plastic)		T _{stg}	-65	+150	°C
Temperature with V _{CC} applied		T _{bias}	-55	+125	°C
DC output current (low)		I _{OUT}	_	20	mA

Note: Stresses greater than those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

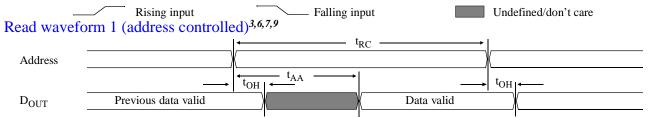
					Supply			
$\overline{\mathrm{CS}}$	WE	ŌĒ	LB	UB	Current	I/O1–I/O8	I/O9–I/O16	Mode
Н	Х	Х	Х	Х	L	High Z	High Z	Standby (I _{SB})
L	Х	Х	Н	Н	I _{SB}	Ingn Z	Ingli Z	Standby (ISB)
L	Н	Н	Х	Х	I _{CC}	High Z	High Z	Output disable (I _{CC})
			L	Н		D _{OUT}	High Z	
L	Н	L	Н	L	I _{CC}	High Z	D _{OUT}	Read (I _{CC})
			L	L		D _{OUT}	D _{OUT}	
			L	Н		D _{IN}	High Z	
L	L	Х	Н	L	I _{CC}	High Z	D _{IN}	Write (I _{CC})
			L	L		D _{IN}	D _{IN}	

Key: X = Don't care, L = Low, H = High.

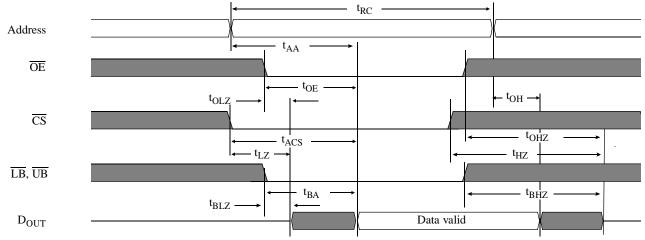
Recommended operating condition (over the operating range)

Parameter	Description	Test Conditions		Min	Max	Unit
V	Output IIICH Valtage	$I_{OH} = -2.1 \text{mA}$	$V_{CC} = 2.7 V$	2.4		v
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.5 \text{mA}$	$V_{CC} = 2.3 V$	2.0		
V	Output LOW Valtage	$I_{OL} = 2.1 \text{mA}$	$V_{CC} = 2.7 V$		0.4	v
V _{OL}	Output LOW Voltage	$I_{OL} = 0.5 mA$	$V_{CC} = 2.3 V$		0.4	
V	Input HIGH Voltage		$V_{CC} = 2.7 V$	2.2	V _{CC} + 0.5	v
V _{IH}	input HIGH voltage		$V_{CC} = 2.3 V$	2.0	V _{CC} + 0.3	
V	Input LOW Voltage		$V_{CC} = 2.7 V$	-0.5	0.8	v
V _{IL}	input LOW voltage		$V_{CC} = 2.3 V$	-0.3	0.6	
I _{IX}	Input Load Current	$GND \le V_{IN} \le V_{CC}$		-1	+1	μΑ
I _{OZ}	Output Load Current	$\text{GND} \le \text{V}_{\text{O}} \le \text{V}_{\text{CC};}$ Outputs High Z		-1	+1	μΑ
T	V _{CC} Operating Supply	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{V}_{\text{IN}} = \text{V}_{\text{IL}}$	$V_{CC} = 3.6V$		2	
I _{CC}	Current	or V_{IH} , $I_{OUT} = 0mA$, f = 0	$V_{CC} = 2.7 V$		1	mA
I _{CC1} @	Average V _{CC} Operating	$\overline{CS} \le 0.2V, V_{IN} \le 0.2V$	$V_{CC} = 3.6V$		5	
1 MHz	Supply Current at 1 MHz	or $V_{IN} \ge V_{CC} - 0.2V$, f = 1 mS	$V_{CC} = 2.7 V$		4	mA
т	Average V _{CC} Operating	$\overline{\text{CS}} \neq \text{V}_{\text{IL}}, \text{V}_{\text{IN}} = \text{V}_{\text{IL}} \text{ or}$	$V_{\rm CC} = 3.6V \ (55/70 \ {\rm ns})$		40/30	
I _{CC2}	Supply Current	$V_{IH}, f = f_{Max}$	$V_{\rm CC} = 2.7 V \ (70 \ \rm ns)$		25	mA
T	$\overline{\text{CS}}$ Power Down Current;	$\overline{CS} \ge V_{IH} \text{ or } \overline{UB} = \overline{LB}$	$V_{CC} = 3.6V$		100	
I _{SB}	TTL Inputs	$\geq V_{IH}$, other inputs = V_{IL} or V_{IH} , f = 0	$V_{CC} = 2.7 V$		100	μA
T	$\overline{\text{CS}}$ Power Down Current;	$\overline{CS} \ge V_{CC} - 0.2V \text{ or}$	$V_{CC} = 3.6V$		20	
I _{SB1}	CMOS Inputs	$\label{eq:constraint} \begin{split} & \overline{CS} \geq V_{CC} - 0.2V \text{ or} \\ & \overline{UB} = \overline{LB} \geq V_{CC} - 0.2V, \\ & \text{other inputs} = 0V - V_{CC}, f = f_{Max} \end{split}$	$V_{CC} = 2.7 V$		15	μA
I _{SBDR}	Data Retention	$\frac{\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.1\text{V},}{\overline{\text{UB}} = \overline{\text{LB}} = \text{V}_{\text{CC}} - 0.1\text{V},}$ $f = 0$	$V_{CC} = 1.2 V$		2	μΑ

Capacitance (f = 1 MHz, $T_a = Room$ temperature, $V_{CC} = NOMINAL)^2$


Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C _{IN}	A, $\overline{\text{CS}}$, $\overline{\text{WE}}$, $\overline{\text{OE}}$, $\overline{\text{LB}}$, $\overline{\text{UB}}$	$V_{IN} = 0V$	5	pF
I/O capacitance	C _{I/O}	I/O	$V_{IN} = V_{OUT} = 0V$	7	pF

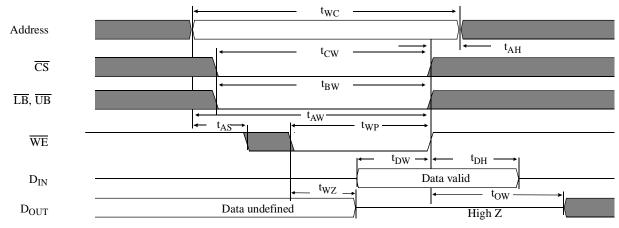
ß

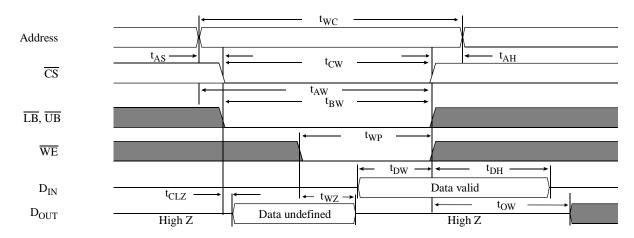

		-5	55	-7	-70		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	-	70	—	ns	
Address access time	t _{AA}	_	55	_	70	ns	3
Chip enable (\overline{CS}) access time	t _{ACS}	_	55	_	70	ns	3
Output enable (\overline{OE}) access time	t _{OE}	_	25	_	35	ns	
Output hold from address change	t _{OH}	10	-	10	_	ns	5
$\overline{\text{CS}}$ low to output in low Z	t _{CLZ}	10	_	10	-	ns	4, 5
$\overline{\text{CS}}$ high to output in high Z	t _{CHZ}	0	20	0	20	ns	4, 5
\overline{OE} low to output in low Z	t _{OLZ}	5	_	5	-	ns	4, 5
UB/LB access time	t _{BA}	_	55	-	70	ns	
$\overline{\text{UB}}/\overline{\text{LB}}$ low to low Z	t _{BLZ}	10	_	10	-	ns	4, 5
$\overline{\text{UB}}/\overline{\text{LB}}$ high to high Z	t _{BHZ}	0	20	0	20	ns	4, 5
$\overline{\text{OE}}$ high to output in high Z	t _{OHZ}	0	20	0	20	ns	4, 5
Power up time	t _{PU}	0	-	0	_	ns	4, 5
Power down time	t _{PD}	_	55	-	70	ns	4, 5

Read cycle (over the operating range)^{3,9}

Key to switching waveforms

Read waveform 2 (\overline{CS} , \overline{OE} , \overline{UB} , \overline{LB} controlled)^{3,6,8,9}

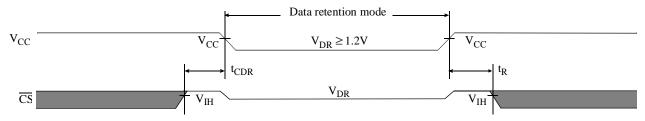



		-4	55	-7	70		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{WC}	55	-	70	-	ns	
Chip enable to write end	t _{CW}	40	-	60	-	ns	12
Address setup to write end	t _{AW}	40	-	60	-	ns	
Address setup time	t _{AS}	0	-	0	-	ns	12
Write pulse width	t _{WP}	35	-	55	-	ns	
Address hold from end of write	t _{AH}	0	-	0	-	ns	
Data valid to write end	t _{DW}	25	-	30	-	ns	
Data hold time	t _{DH}	0	-	0	-	ns	4, 5
Write enable to output in high Z	t _{WZ}	0	20	0	20	ns	4, 5
Output active from write end	t _{OW}	5	-	5	-	ns	4, 5
$\overline{\text{UB}}/\overline{\text{LB}}$ low to end of write	t _{BW}	35	-	55	_	ns	

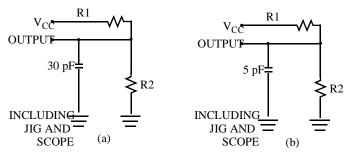
Write cycle (over the operating range)^{II}

Write waveform 1 ($\overline{\text{WE}}$ controlled)^{10,11}

Write waveform 2 ($\overline{\text{CS}}$ controlled)^{10,11}



ALLIANCE SEMICONDUCTOR


Data retention characteristics (over the operating range)^{13,5}

Parameter	Symbol	Test conditions	Min	Max	Unit
V _{CC} for data retention	V _{DR}	$V_{CC} = 1.2V$	1.2V	3.6	V
Data retention current	I _{CCDR}	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.1 \text{V or}$ $\overline{\text{UB}} = \overline{\text{LB}} = \ge \text{V}_{\text{CC}} - 0.1 \text{V}$	_	4	μΑ
Chip deselect to data retention time	t _{CDR}	$V_{IN} \ge V_{CC} - 0.1 V \text{ or}$	0	_	ns
Operation recovery time	t _R	$V_{\rm IN} \le 0.1 \rm V$	t _{RC}	_	ns

Data retention waveform

AC test loads and waveforms

Thevenin equivalent:

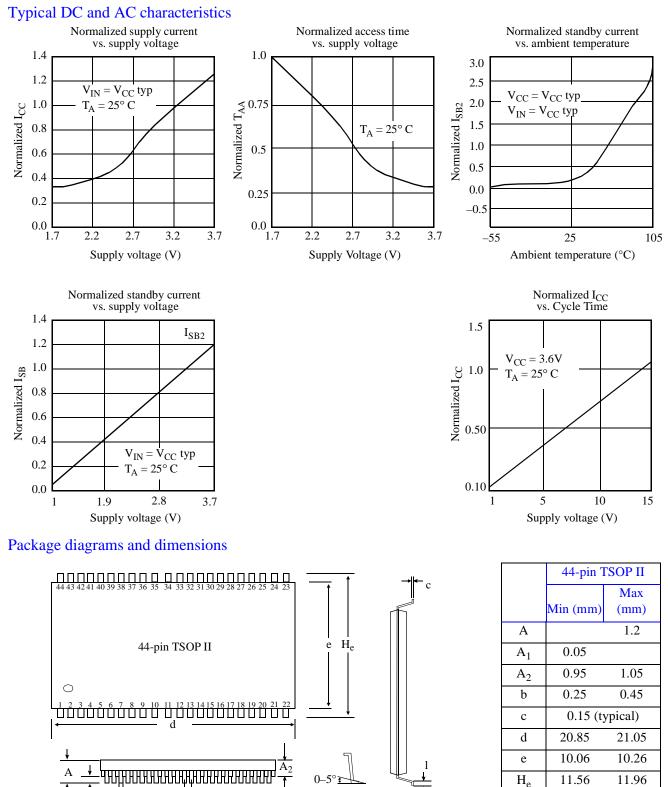
 \mathbf{R}_{TH}

(c)

ALL INPUT PULSES V_{CC} Typ 90% g_{ND} 90% f_{CC} f_{ND} f_{CC} f_{ND} f_{CC} f_{ND} f_{CC} f_{ND} f_{CC} f_{ND} f_{ND

OUTPUT

Parameters	$V_{CC} = 3.0V$	$V_{CC} = 2.5 V$	$V_{CC} = 2.0 V$	Unit
R1	1105	16670	15294	Ohms
R2	1550	15380	11300	Ohms
R _{TH}	645	8000	6500	Ohms
V _{TH}	1.75V	1.2V	0.85V	Volts


Notes

- 1 During V_{CC} power-up, a pull-up resistor to V_{CC} on \overline{CS} is required to meet I_{SB} specification.
- 2 This parameter is sampled, but not 100% tested.
- 3 For test conditions, see AC Test Conditions.

4 t_{CLZ} and t_{CHZ} are specified with $C_L = 5pF$ as in Figure C. Transition is measured $\pm 500 \text{ mV}$ from steady-state voltage.

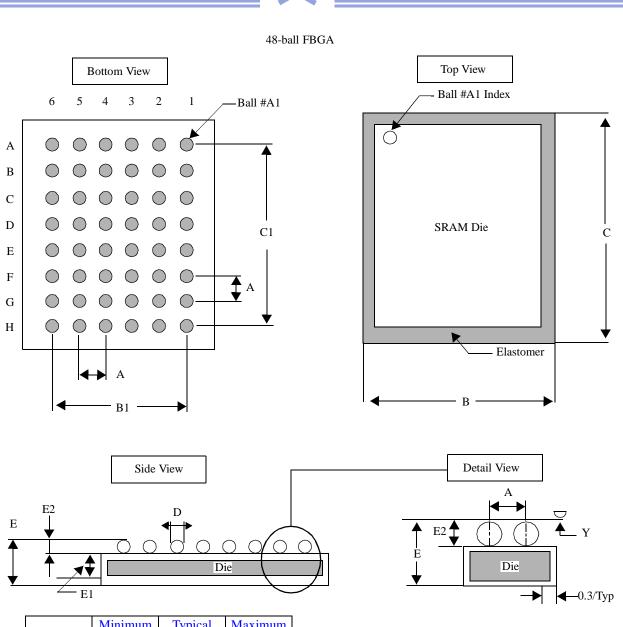
- 5 This parameter is guaranteed, but not tested.
- $\overline{\text{WE}}$ is HIGH for read cycle.
- 7 $\overline{\text{CS}}$ and $\overline{\text{OE}}$ are LOW for read cycle.
- 8 Address valid prior to or coincident with \overline{CS} transition LOW.
- 9 All read cycle timings are referenced from the last valid address to the first transitioning address.
- 10 \overline{CS} or \overline{WE} must be HIGH during address transitions. Either \overline{CS} or \overline{WE} asserting high terminates a write cycle.
- 11 All write cycle timings are referenced from the last valid address to the first transitioning address.
- 12 N/A.
- 13 1.2V data retention applies to commercial and industrial temperature range operations.
- 14 C = 30 pF, except at high Z and low Z parameters, where C = 5 pF.

A

10/6/00

h

E


0.80 (typical)

0.60

0.40

Е

1

	Minimum	Typical	Maximum
А	_	0.75	-
В	6.90	7.00	7.10
B1	-	3.75	-
С	10.90	11.00	11.10
C1	-	5.25	-
D	0.30	0.35	0.40
Е	-	_	1.20
E1	_	0.68	-
E2	0.22	0.25	0.27
Y	-	_	0.08

Notes

- 1. Bump counts: 48 (8 row \times 6 column).
- 2. Pitch: $(x,y) = 0.75 \text{ mm} \times 0.75 \text{ mm}$ (typ).
- 3. Units: millimeters.
- 4. All tolerance are ± 0.050 unless otherwise specified.
- 5. Typ: typical.
- 6. Y is coplanarity: 0.08 (max).

Ordering codes

Speed (ns)	Ordering Code	Package Type	Operating Range	
55/70	AS6UA25616-TC	44-pin TSOP II	Commercial	
	AS6UA25616-BC	48-ball fine pitch BGA		
55/70	AS6UA25616-TI	44-pin TSOP II	- Industrial	
	AS6UA25616-BI	48-ball fine pitch BGA		

Part numbering system

AS6UA	25616	T, B	С, І
SRAM Intelliwatt [™] prefix	Device number	Package: T: TSOP II B: CSP BGA	Temperature range: C: Commercial: 0° C to 70° C IL Industrial: –40° C to 85° C

ALLIANCE SEMICONDUCTOR

10/6/00

Copyright ©2000 Alliance Semiconductor Corporation (Alliance)'s three-point logo, our name, and IntelliwattTM are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this web site and its products at any time without no tice. Alliance assumes no responsibility for any errors that may appear in this web site. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as expressly agreed to in Alliance's Terms and Conditions of Sale (available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not onvey a license under any patent rights, copyrights, mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems all risk of such use and agrees to indemnify Alliance against all claims arising from such use.