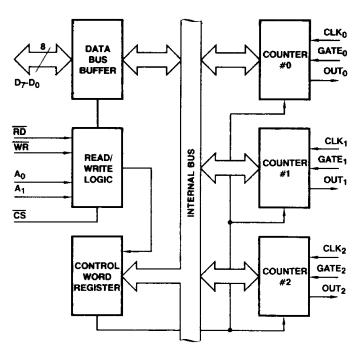
DISTINCTIVE CHARACTERISTICS

- SMD/DESC qualified
- Both Binary and BCD counting
- Single +5-V supply
- Three independent 16-bit counters

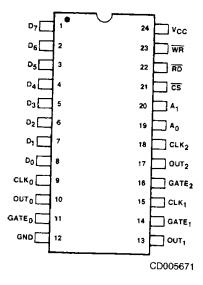

- DC to 5 MHz
- Programmable counter modes
- Bus-oriented I/O

GENERAL DESCRIPTION

The 8253 is a programmable counter/timer chip designed for use with 8080A/8085A microprocessors. It uses NMOS technology with a single +5-V supply and is a direct replacement for Intel's 8253/8253-5.

Each device is organized as three independent 16-bit counters, each counter having a rate of up to 5 MHz. All modes of operation are software-programmable. For improved performance devices, see the Am9513A System Timing Controller.

BLOCK DIAGRAM



BD003760

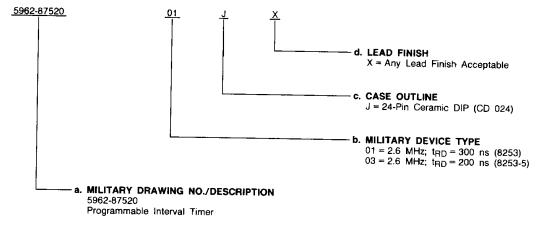
Power { +5 V Supplies { GND

Publication # Rev. Amendment
07935 B /0
Issue Date: November 1987

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

MILITARY ORDERING INFORMATION


Standard Military Drawing (SMD)/DESC Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMD)/DESC products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for SMD/DESC products is formed by a combination of: a. Military Drawing Part Number

b. Device Type

c. Case Outline

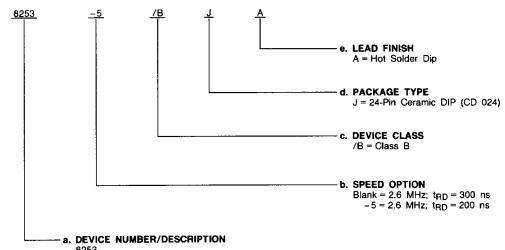
d. Lead Finish

Valid Combinations 5962-8752001 JX 5962-8752003 JX

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests


Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

MILITARY ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: **a. Device Number**

- b. Speed Option (if applicable)
- c. Device Class
- d. Package Type
- e. Lead Finish

Programmable Interval Timer

Valid Co	Valid Combinations				
8253					
8253-5	/BJA				

Group A Tests

Group A Tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C
Voltage On Any Pin
with Respect to Ground0.5 to +7.0 V
Power Dissipation

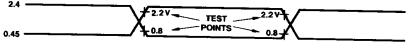
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices		
Temperature (T _C)55 to	o	125°C
Supply Voltage (V _{CC})5	/	±10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)


Parameter	Parameter		8253-5		8253		1
Symbol	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{IL}	Input LOW Voltage	$V_{CC} = 5 \text{ V } \pm 10\%$	5* at	7	5*		
V _{IH}	Input HIGH Voltage	V _{CC} = 5 V ± 10%	2.	V _{CC} + .5 V*		.7	V
VOL	Output LOW Voltage	I _{OL} = 1.6 mA.		VCC T.5 V	2.2	V _{CC} + .5 V*	V
	Colput LOW Voltage	V _{CC} = 5 V ± 10%		0.45		0.45	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -150 \mu A$, $V_{CC} = 5 V \pm 10\%$	2.1		2.4		
hL h	input Load Current	$V_{IN} = V_{CC}$ to $V_{CC} = Max$		±20		± 20	μA
lofL	Output Float Leakage	VOUT = C V,		± 20		±20	
		VC = Wa	 			-20	μΑ
lcc	V _{CC} Supply Current	Out to Olloaded Static (Note 1)		140		140	mA

CAPACITANCE TC = 25°C; CC GD = 0 V

Parameter Symbol	Parametric Description	Test Conditions	Min.	Тур.	Max.	Unit
C _{IN} †	Input Capacitance	f _C = 1 MHz			10*	
C _{I/O} †	I/O Capacitance	Unmeasured pins returned to VSS				pF
*Guarantand	by docion, and the t				20 *	pF

*Guaranteed by design; not tested. †Not included in Group A tests.

SWITCHING TEST WAVEFORM

WF006951

Input

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Note 2)

Danam star		8253		8253-5				
No. Parameter		Parameter Description	Min.	Max.	Min.	Max.	Unit	
READ C'	YCLE							
1	t _{AR}	Address Stable Before READ	50		30		ns	
2	tRA	Address Hold Time for READ	5		5	1	ns	
3	t _{RR}	READ Pulse Width	400		300	1	ns	
4	t _{RD} (Note 3)	Data Delay from READ		900	<u> </u>	200	ns	
5	tof	READ to Data Floating	25	1	25	100	ns	
6	t _{RV}	Recovery Time Between READ and Any Other Control Signal			1		μs	
WRITE C	YCLE		1					
7	taw	Address Stable Before WRITE	50		30		ns	
8	twa	Address Hold Time for WRITE	30		30		ns	
9	tww	WRITE Pulse Width	400		300		ns	
10	t _{DW}	Data Setup Time for WRITE	300		250		ns	
11	twD	Data Hold Time for WRITE	40		30		ns	
12	t _{RV}	Recovery Time Between RITE of Any Other Control Signal	1		1		μs	
CLOCK A	AND GATE TIMIN	G (Note 2)	-		•	•		
13	t _{CLK}	Clock Period	380	DC	380	DC	ns	
14	tpwH	HIGH Puise Widne	230		230		ns	
15	tpwL	LOW DUST Widay	150		150		ns	
16	tgw	Gant With High	150		150		ns	
17	t _{GL}	Catt Wath LOW	100		100		ns	
18	tgs	ate Betup Time to CLKt	100		100		ns	
19	tgн	Gate Hold Time After CLK1	55		55		ns	
20	t _{OD} (Note 3)	Output Delay from CLK1		400		400	ns	
21	t _{ODG} (Note 3)	Output Delay from Gate	Ī	300		300	ns	

Notes: 1. I_{CC} is measured in a static condition with no output loads applied. 2. Test Conditions: $V_{CC}=5$ V $\pm 10\%$ $V_{IL}=0.45$ V, $V_{IH}=2.4$ V $V_{OL}=0.8$ V, $V_{OH}=2.2$ V $I_{OL}=1.6$ mA, $I_{OH}=150$ μ A
3. Test Condition: $C_{L}=100$ pF ± 20 pF.