

1.0 **Features**

- Matches MK3727 center frequency characteristics
- Phase-locked loop (PLL) device synthesizes output clock frequency from crystal oscillator or external reference clock
- On-chip tunable voltage-controlled crystal oscillator (VCXO) allows precise system frequency tuning
- 3.3V supply voltage
- Very low phase noise PLL
- Use with "pullable" 14pF crystals no external padding capacitors required
- Small circuit board footprint (8-pin 0.150" SOIC)
- Custom frequency selections available contact your . local AMI Sales Representative for more information

2.0 **Description**

The FS6128 is a monolithic CMOS clock generator IC designed to minimize cost and component count in digital video/audio svstems.

At the core of the FS6128 is circuitry that implements a voltage-controlled crystal oscillator (VCXO) when an external resonator (nominally 13.5MHz) is attached. The VCXO allows device frequencies to be precisely adjusted for use in systems that have frequency matching requirements, such as digital satellite receivers.

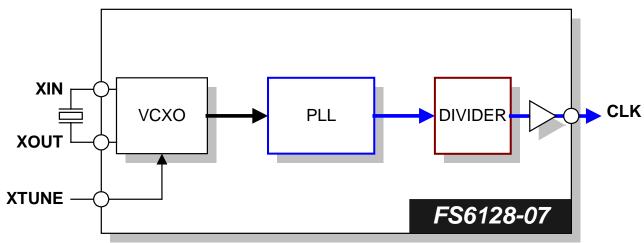

A high-resolution phase-locked loop generates an output clock (CLK) through a post-divider. The CLK frequency is ratiometrically derived from the VCXO frequency. The locking of the CLK frequency to other system reference frequencies can eliminate unpredictable artifacts in video systems and reduce electromagnetic interference (EMI) due to frequency harmonic stacking.

Table 1: Crystal / Output Frequencies

DEVICE	f _{xın} (MHz)	CLK (MHz)
FS6128-07	13.500	27.000

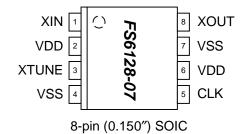

NOTE: Contact AMI for custom PLL frequencies

Figure 2: Block Diagram

American Microsystems, Inc. reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Figure 1: Pin Configuration

Table 2: Pin Descriptions

Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; DI^U = Input with Internal Pull-Up; DI_D = Input with Internal Pull-Down; DIO = Digital Input/Output; DI-3 = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low pin

PIN	TYPE	NAME	DESCRIPTION	
1	AI	XIN	VCXO Feedback	
2	Р	VDD	Power Supply (+3.3V)	
3	AI	XTUNE	VCXO Tune	
4	Р	VSS	Ground	
5	DO	CLK	Clock Output	
6	Р	VDD	Power Supply (+3.3V)	
7	DO	VSS	Ground	
8	AO	XOUT	VCXO Drive	

3.0 Functional Block Description

3.1 Voltage-Controlled Crystal Oscillator (VCXO)

The VCXO provides a tunable, low-jitter frequency reference for the rest of the FS6128 system components. Loading capacitance for the crystal is internal to the FS6128. No external components (other than the resonator itself) are required for operation of the VCXO.

Continuous fine-tuning of the VCXO frequency is accomplished by varying the voltage on the XTUNE pin. The value of this voltage controls the effective capacitance presented to the crystal. The actual amount that this load capacitance change will alter the oscillator frequency depends on the characteristics of the crystal as well as the oscillator circuit itself.

It is important that the crystal load capacitance is specified correctly to "center" the tuning range. See Table 5.

A simple formula to obtain the "pulling" capability of a crystal oscillator is:

$$\Delta f(ppm) = \frac{C_1 \times (C_{L2} - C_{L1}) \times 10^6}{2 \times (C_0 + C_{L2}) \times (C_0 + C_{L1})}$$

where:

 C_0 = the shunt (or holder) capacitance of the crystal

C1 = the motional capacitance of the crystal

 C_{L1} and C_{L2} = the two extremes (minimum and maximum) of the applied load capacitance presented by the FS6128.

EXAMPLE: A crystal with the following parameters is used: $C_1 = 0.025pF$ and $C_0 = 6pF$. Using the minimum and maximum $C_{L1} = 10pF$, and $C_{L2} = 20pF$, the tuning range (peak-to-peak) is:

$$\Delta f = \frac{0.025 \times (20 - 10) \times 10^6}{2 \times (6 + 20) \times (6 + 10)} = 300 \, ppm \,.$$

3.2 Phase-Locked Loop (PLL)

The on-chip PLL is a standard frequency- and phaselocked loop architecture. The PLL multiplies the reference oscillator frequency to the desired output frequency by a ratio of integers. The frequency multiplication is exact with a zero synthesis error (unless otherwise specified).

4.0 **Electrical Specifications**

Table 3: Absolute Maximum Ratings

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only, and functional operation of the device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect device performance, functionality, and reliability.

PARAMETER	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage (V _{SS} = ground)	V _{DD}	V _{SS} -0.5	7	V
Input Voltage, dc	VI	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	V _{SS} -0.5	V _{DD} +0.5	V
Input Clamp Current, dc ($V_1 < 0$ or $V_1 > V_{DD}$)	I _{IK}	-50	50	mA
Output Clamp Current, dc (V _I < 0 or V _I > V _{DD})	I _{ок}	-50	50	mA
Storage Temperature Range (non-condensing)	Ts	-65	150	°C
Ambient Temperature Range, Under Bias	T _A	-55	125	°C
Junction Temperature	TJ		125	°C
Lead Temperature (soldering, 10s)			260	°C
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)			2	kV

CAUTION: ELECTROSTATIC SENSITIVE DEVICE

Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a high-energy electrostatic discharge.

Table 4: Operating Conditions

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Supply Voltage	V _{DD}	3.3V ± 10%	3.0	3.3	3.6	V
Ambient Operating Temperature Range	T _A		0		70	°C
Crystal Resonator Frequency	f _{XTAL}	Fundamental Mode	12	13.5	18	MHz

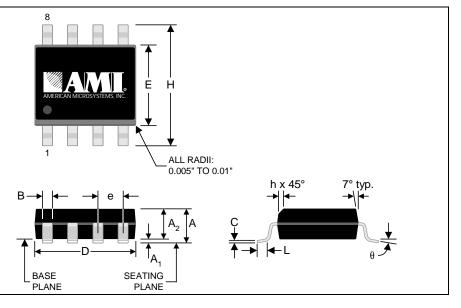
Table 5: DC Electrical Specifications

Unless otherwise stated, $V_{DD} = 3.3V \pm 10\%$, no load on any output, and ambient temperature range $T_A = 0^\circ$ C to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical. Negative currents indicate current flows out of the device.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS	
Overall							
Supply Current, Dynamic, with Loaded Outputs	I _{DD}	$f_{XTAL} = 13.5 MHz; C_L = 10 pF, V_{DD} = 3.6 V$		30		mA	
Supply Current, Static	I _{DD}	$XIN = 0V, V_{DD} = 3.6V$		3		mA	
Voltage Controlled Crystal Oscillator (con	tact factory fo	or approved crystal sources or other applica	ation assis	stance)			
Crystal Loading Capacitance at Center Tuning Voltage	$C_{\text{L(xtal)}}$	Order crystal for this capacitance (parallel load) at desired center frequency		14		pF	
Crystal Resonator Motional Capacitance	C ₁	Specified motional capacitance of the crystal will affect pullability (see text)		25		fF	
XTUNE Effective Range			0		3	V	
Synthesized Load Capacitance Min.	C _{L1}	@V(XTUNE)=minimum value		10		pF	
Synthesized Load Capacitance Max.	C _{L2}	@V(XTUNE)=maximum value		20		pF	
VCXO Tuning Range		f_{XTAL} = 13.5MHz; $C_{L(xtal)}$ = 14pF; $C_{1(xtal)}$ = 25fF (peak-to-peak)		300		ppm	
VCXO Tuning Characteristic		Note: positive change of XTUNE = positive change of VCXO frequency		150		ppm/V	
Crystal Drive Level		$R_{XTAL}=20\Omega; C_L = 20pF$		200		uW	
Clock Output (CLK)							
High-Level Output Source Current *	I _{OH}	$V_0 = 2.0V$		-40		mA	
Low-Level Output Sink Current *	I _{OL}	$V_{\rm O} = 0.4 V$		17		mA	
Output Impodence *	Z _{OH}	$V_{O} = 0.1 V_{DD}$; output driving high		25			
Output Impedance *	Z _{OL}	$V_{O} = 0.1 V_{DD}$; output driving low		25		Ω	
Short Circuit Source Current *	I _{OSH}	$V_0 = 0V$; shorted for 30s, max.		-55		mA	
Short Circuit Sink Current *	I _{OSL}	$V_{\rm O}$ = 3.3V; shorted for 30s, max.		55		mA	

Table 6: AC Timing Specifications

Unless otherwise stated, V_{DD} = 3.3V ± 10%, no load on any output, and ambient temperature range T_A = 0°C to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are ± 3 σ from typical.


PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS			
Overall									
VCXO Stabilization Time *	t _{VCXOSTB}	CXOSTB From power valid 10			ms				
PLL Stabilization Time *	t _{PLLSTB}	From VCXO stable		100		us			
Synthesis Error		(unless otherwise noted in Frequency Table)			0	ppm			
Clock Output (CLK)									
Duty Cycle *		Ratio of high pulse width (as measured from rising edge to next falling edge at $V_{DD}/2$) to one clock period	45		55	%			
Jitter, Period (peak-peak) *	t _{j(AP)}	From rising edge to next rising edge at $V_{DD}/2$, $C_L = 10 pF$		200		ps			
Jitter, Long Term ($\sigma_y(\tau)$) *	t _{j(LT)}	From 0-500 μ s at V _{DD} /2, C _L = 10pF compared to ideal clock source		100		ps			
Rise Time *	tr	V_{DD} = 3.3V; V_{O} = 0.3V to 3.0V; C_{L} = 10pF		1.7		ns			
Fall Time *	t _f	V_{DD} = 3.3V; V_{O} = 3.0V to 0.3V; C_{L} = 10pF		1.7		ns			

5.0 Package Information

Table 7: 8-pin SOIC (0.150") Package Dimensions

	DIMENSIONS					
	INC	HES	MILLIM	ETERS		
	MIN.	MAX.	MIN.	MAX.		
А	0.061	0.068	1.55	1.73		
A1	0.004	0.0098	0.102	0.249		
A2	0.055	0.061	1.40	1.55		
В	0.013	0.019	0.33	0.49		
С	0.0075	0.0098	0.191	0.249		
D	0.189	0.196	4.80	4.98		
Е	0.150	0.157	3.81	3.99		
е	0.050	BSC	1.27	BSC		
Н	0.230	0.244	5.84	6.20		
h	0.010	0.016	0.25	0.41		
L	0.016	0.035	0.41	0.89		
Θ	0°	8°	0°	8 °		

Table 8: 8-pin SOIC (0.150") Package Characteristics

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	TYP.	UNITS	
Thermal Impedance, Junction to Free-Air 8-pin 0.150" SOIC	Θ_{JA}	Air flow = 0 m/s	110	°C/W	
Land Industry of Oalf	L ₁₁	Corner lead	2.0	- nH	
Lead Inductance, Self		Center lead	1.6		
Lead Inductance, Mutual	L ₁₂	Any lead to any adjacent lead	0.4	nH	
Lead Capacitance, Bulk	C ₁₁	Any lead to V_{SS}	0.27	pF	

6.0 Ordering Information

Table 9: Device Ordering Codes

ORDERING CODE	DEVICE NUMBER	PACKAGE TYPE	OPERATING TEMPERATURE RANGE	SHIPPING CONFIGURATION
11640-843	FS6128-07	8-pin (0.150") SOIC (Small Outline Package)	0°C to 70°C (Commercial)	Tape and Reel

Copyright © 2000 American Microsystems, Inc.

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications.

American Microsystems, Inc., 2300 Buckskin Rd., Pocatello, ID 83201, (208) 233-4690, FAX (208) 234-6796, WWW Address: <u>http://www.amis.com</u> E-mail: <u>tgp@amis.com</u>

