5910

HIGH-VOLTAGE BiMOS III 10-BIT SERIAL-INPUT, LATCHED DRIVERS

Note that the dual in-line package (designator 'A') and small-outline IC package (designator 'LW') are electrically identical and share a common terminal number assignment.
ABSOLUTE MAXIMUM RATINGS

$$
\text { at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

Logic Supply Voltage, V_{DD} 15 V
Driver Supply Voltage, V_{BB}

UCN5910A/LW
150 V
Suffix " 2 " 140 V
Continuous Output Current Range,
IOUT
-30 mA to $+\mathbf{4 0} \mathrm{mA}$
Input Voltage Range,
$V_{\text {IN }}$ \qquad -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Package Power Dissipation, P_{D}. See Graph Operating Temperature Range,
T_{A}............................... $-\mathbf{2 0}^{\circ} \mathrm{C}$ to $\mathbf{~}_{\mathbf{8 5}}{ }^{\circ} \mathrm{C}$
Storage Temperature Range,
$\mathrm{T}_{\mathrm{S}} . ~-55^{\circ} \mathrm{C}$ to $+\mathbf{1 5 0}^{\circ} \mathrm{C}$
Caution: CMOS devices have input static protection but are susceptible to damage when exposed to extremely high static electrical charges.

The UCN5910x combines a 10-bit CMOS shift register and accompanying data latches, control circuitry, high-voltage bipolar sourcing outputs with DMOS active pull-downs. Designed primarily to drive ink-jet and piezoelectric printers, large flat-panel vacuum-fluorescent or ac plasma displays, the 140 V or 150 V and $\pm 50 \mathrm{~mA}$ output ratings also allow these devices to be used in many other peripheral power driver applications. The lower-cost (suffix " -2 ") devices are identical to the basic devices except for output voltage rating.

The CMOS shift register and latches allow direct interfacing with micro-processor-based systems. With a 5 V logic supply, serial-data input rates are typically over 5 MHz , with significantly higher speeds obtainable at 12 V . Use with TTL may require appropriate pull-up resistors to ensure an input logic high.

A CMOS serial data output enables cascade connections in applications requiring additional drive lines. Similar devices for up to 60 -volt operation are available in $10,12,20$, and 32 -bit configurations.

The UCN5910A/LW output source drivers are npn Darlingtons capable of sourcing at least 40 mA . The DMOS active pull-downs are capable of sinking at least 30 mA . For inter-digit blanking, all of the output drivers can be disabled and the DMOS sink drivers turned ON by the BLANKING input high.

The UCN5910A and UCN5910A-2 are furnished in a 20-pin dual in-line plastic package. The surface-mount UCN5910LW and UCN5910LW-2 are furnished in a wide-body, small-outline plastic package (SOIC) with gull-wing leads. Copper lead frames, reduced supply current requirements, and lower output saturation voltages allow all devices to be operated at $\pm 20 \mathrm{~mA}$ from all outputs (50% duty cycle), at ambient temperatures up to $+30^{\circ} \mathrm{C}$, or at $\pm 15 \mathrm{~mA}$ to $+55^{\circ} \mathrm{C}$.

FEATURES

■ High-Speed Source Drivers
■ 140 V (suffix "-2") or 150 V Minimum Output Breakdown
\square Low Output Saturation Voltages

- Low-Power CMOS Logic and Latches
- To 3.3 MHz Data Input Rate
- Active DMOS Pull-Downs for TL4810B

PRELIMINARY INFORMATION
(Subject to change without notice) January 18, 2000

Always order by complete part number, e.g., UCN5910A-2.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL INPUT CIRCUIT

Dwg. GS-004A

Dwg. EP-010-4A

TYPICAL OUTPUT DRIVER

115 Northeast Cutoff, Box 15036

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=150 \mathrm{~V}$ (basic devices) or

 140 V (suffix "-2") unless otherwise noted.| Characteristic | Symbol | Test Conditions | Limits @ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ | | | Limits @ $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ | | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIn. | Typ. | Max. | Min. | Typ. | Max. | |
| Output Leakage Current | $\mathrm{I}_{\text {CEX }}$ | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ | - | -5.0 | -15 | - | -5.0 | -15 | $\mu \mathrm{A}$ |
| Output Voltage | $\mathrm{V}_{\text {OUT(1) }}$ | Basic, $\mathrm{I}_{\text {OUT }}=-40 \mathrm{~mA}$ | 145 | 148 | - | 145 | 148 | - | V |
| | | Suffix "-2", $\mathrm{l}_{\text {OUT }}=-40 \mathrm{~mA}$ | 135 | - | - | 135 | - | - | V |
| | $\mathrm{V}_{\text {OUT(0) }}$ | $\mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}$ | - | 2.5 | 3.2 | - | 2.0 | 3.2 | V |
| | | $\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$ | - | 5.0 | - | - | - | - | V |
| | | $\mathrm{l}_{\text {OUT }}=30 \mathrm{~mA}$ | - | - | - | - | 12 | 25 | V |
| Output Pull-Down Current | Iout(0) | $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ to $\mathrm{V}_{\text {BB }}$ | 10 | 14 | - | - | - | - | mA |
| | | $\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}$ to $\mathrm{V}_{\text {BB }}$ | - | - | - | 25 | 40 | - | mA |
| Input Voltage | $\mathrm{V}_{\text {IN(1) }}$ | | 3.5 | - | 5.3 | 10.5 | - | 12.3 | V |
| | $\mathrm{V}_{\text {IN(0) }}$ | | -0.3 | - | +0.8 | -0.3 | - | +0.8 | V |
| Input Current | $1 \mathrm{IN}(1)$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ | - | 0.05 | 0.5 | - | 0.05 | 1.0 | $\mu \mathrm{A}$ |
| | $\mathrm{I}_{\mathrm{IN}(0)}$ | $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ | -0.3 | - | -0.8 | -0.3 | - | -0.8 | $\mu \mathrm{A}$ |
| Serial Data Output Voltage | $\mathrm{V}_{\text {OUT(1) }}$ | $\mathrm{l}_{\text {OUT }}=-200 \mu \mathrm{~A}$ | 4.5 | 5.0 | - | 11.7 | 12 | - | V |
| | $\mathrm{V}_{\text {OUT(0) }}$ | $\mathrm{l}_{\text {OUT }}=200 \mu \mathrm{~A}$ | - | 200 | 250 | - | 200 | 250 | mV |
| Maximum Clock Frequency | $\mathrm{f}_{\text {clk }}$ | | 3.3 | 5.0 | - | 5.0 | - | - | MHz |
| Supply Current | $\mathrm{I}_{\mathrm{DD}(1)}$ | All Outputs High | - | 320 | 450 | - | 650 | 800 | $\mu \mathrm{A}$ |
| | $\mathrm{I}_{\mathrm{DD}(0)}$ | All Outputs Low | - | 320 | 450 | - | 650 | 800 | $\mu \mathrm{A}$ |
| | $\mathrm{I}_{\mathrm{BB}(1)}$ | Outputs High, No Load | - | 0.6 | 1.75 | - | 0.9 | 1.75 | mA |
| | $\mathrm{I}_{\mathrm{BB}(0)}$ | Outputs Low | - | 10 | 100 | - | 10 | 100 | $\mu \mathrm{A}$ |
| Blanking to Output Delay | $\mathrm{t}_{\text {PHL }}$ | $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 50 \%$ to 50% | - | 0.7 | 0.9 | - | 0.35 | 0.6 | $\mu \mathrm{s}$ |
| | $\mathrm{t}_{\text {PLH }}$ | $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 50 \%$ to 50% | - | 0.9 | 1.3 | - | 0.35 | 0.6 | $\mu \mathrm{s}$ |
| Output Fall Time | t_{f} | $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 90 \%$ to 10% | - | 1.3 | 1.5 | - | 0.6 | 0.7 | $\mu \mathrm{s}$ |
| Output Rise Time | t_{r} | $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 10 \%$ to 90% | - | 1.2 | 1.5 | - | 1.0 | 1.2 | $\mu \mathrm{s}$ |

Negative current is defined as coming out of (sourcing) the specified device terminal.

Dwg. No. A-12,649A

TIMING CONDITIONS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}\right.$, Logic Levels are V_{DD} and Ground)
A. Minimum Data Active Time Before Clock Pulse (Data Set-Up Time) 75 ns
B. Minimum Data Active Time After Clock Pulse
(Data Hold Time)
75 ns
C. Minimum Data Pulse Width .. 150 ns
D. Minimum Clock Pulse Width .. 100 ns
E. Minimum Time Between Clock Activation and Strobe 300 ns
F. Minimum Strobe Pulse Width ... 100 ns
G. Typical Time Between Strobe Activation and

Output Transition
750 ns

Serial Data present at the input is transferred to the shift register on the logic " 0 " to logic " 1 " transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.

Information present at any register is transferred to the respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the BLANKING input be high during serial data entry.

When the BLANKING input is high, the output source drivers are disabled (OFF); the DMOS sink drivers are ON. The information stored in the latches is not affected by the BLANKING input. With the BLANKING input low, the outputs are controlled by the state of their respective latches.

TRUTH TABLE

L = Low Logic Level $\quad H=$ High Logic Level $\quad X=$ Irrelevant $\quad P=$ Present State $\quad R=$ Previous State

UCN5910A \& UCN5910A-2

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.
3. Lead thickness is measured at seating plane or below.

5910
HIGH-VOLTAGE BiMOS III
10-BIT SERIAL-INPUT, LATCHED DRIVERS

UCN5910LW \& UCN5910LW-2

Dwg. MA-008-20 mm
NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.

This page intentionally left blank

BiMOS II (Series 5800), BiMOS III (Series 5900), \& DABiC IV (Series 6800) INTELLIGENT POWER INTERFACE DRIVERS

Function	Output Ratings*		Part Number †
	SERIAL-INPUT LATCHED DRIVERS		
8-Bit (saturated drivers)	-120 mA	$50 \mathrm{~V} \ddagger$	5895
8-Bit	350 mA	50 V	5821
8-Bit	350 mA	80 V	5822
8-Bit	350 mA	$50 \mathrm{~V} \ddagger$	5841
8-Bit	350 mA	$80 \mathrm{~V} \ddagger$	5842
8-Bit (constant-current LED driver)	75 mA	17 V	6275
9-Bit	1.6 A	50 V	5829
10-Bit (active pull-downs)	-25 mA	60 V	$5810-\mathrm{F}$ and 6809/10
10-Bit (active pull-downs)	-40 mA	140 V	$5910-2$
10-Bit (active pull-downs)	-40 mA	150 V	5910
12-Bit (active pull-downs)	-25 mA	60 V	5811 and 6811
16-Bit (constant-current LED driver)	75 mA	17 V	6276
20-Bit (active pull-downs)	-25 mA	60 V	$5812-\mathrm{F}$ and 6812
32-Bit (active pull-downs)	-25 mA	60 V	$5818-\mathrm{F}$ and 6818
32-Bit	100 mA	30 V	5833
32-Bit (saturated drivers)	100 mA	40 V	5832
		350 mA	$50 \mathrm{~V} \ddagger$
4-Bit	-25 mA	60 V	
8-Bit	350 mA	$50 \mathrm{~V} \ddagger$	5800
8-Bit	PARALLEL-INPUT LATCHED DRIVERS	5815	
		5801	
Unipolar Stepper Motor Translator/Driver	SPECIAL-PURPOSE DEVICES		
Addressable 28-Line Decoder/Driver	1.25 A	$50 \mathrm{~V} \ddagger$	5804

* Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits.

Negative current is defined as coming out of (sourcing) the output.
\dagger Complete part number includes additional characters to indicate operating temperature range and package style.
\ddagger Internal transient-suppression diodes included for inductive-load protection.

> Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.
> The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

