
PRELIMINARY INFORMATION

(subject to change without notice) July 13, 1999

A8188SLT-xx

Dwg. PS-022-2

where "-xx" is the required output voltage in tenths

ABSOLUTE MAXIMUM RATINGS

Input Voltage, V_I 10 V Peak Output Current,

Enable Input Voltage, V_E...... Operating Temperature Range,

 T_A -20°C to +85°C Junction Temperature, T_1 +150°C[†] Storage Temperature Range,

- * Output current rating is limited by input voltage, duty cycle, and ambient temperature. Under any set of conditions, do not exceed a junction temperature of +150°C. See following pages.
- † Fault conditions that produce excessive junction temperature will activate device thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

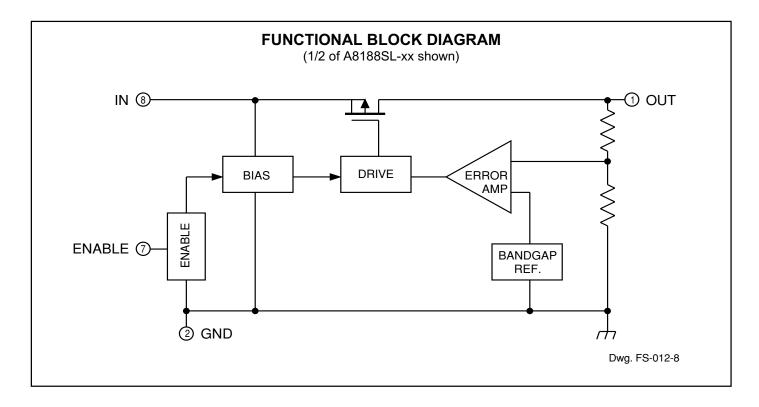
LOW-DROPOUT REGULATORS — HIGH EFFICIENCY

Designed specifically to meet the requirement for extended operation of battery-powered equipment such as cordless and cellular telephones, the A8188S—voltage regulators offer the reduced dropout voltage and quiescent current essential for maximum battery life. Applicable also to palmtop computers and personal data assistants, these devices deliver a regulated output at up to 250 mA (transient), which is limited only by package power dissipation. Regulated output voltages between 2.5 V and 3.3 V are trimmed at wafer probe.

A PMOS pass element provides a typical dropout voltage of only 90 mV at 60 mA of load current. The low dropout voltage permits deeper battery discharge before output regulation is lost. Quiescent current does not increase significantly as the dropout voltage is approached, an ideal feature in standby/resume power systems where data integrity is crucial. Regulator accuracy and excellent temperature characteristics are provided by a bandgap reference. The A8188SL-xx includes ENABLE inputs to give the designer complete control over power up, standby, or power down.

These devices are supplied, without the ENABLE function, in a standard 3-lead SOT-89/TO-243AA small-outline plastic transistor package (suffix 'LT'). Dual regulators (A8188SL-xx) are provided in an 8-lead SOIC package. All devices are rated for operation over a temperature range of -20°C to +85°C.

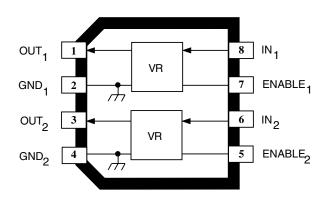
FEATURES AND BENEFITS


- High Efficiency Provides Extended Battery Life
- \blacksquare 90 mV Typical Dropout Voltage at $I_0 = 60 \text{ mA}$
- 55 µA Typical Quiescent Current Less Than 1 µA "Sleep" Current
- 250 mA Peak Output Current
- Improved PSRR and Transient Performance
- Internal Thermal Protection

APPLICATIONS

- Cordless and Cellular Telephones
- Personal Data Assistants
- Personal Communicators
- Palmtop Computers

Always order by complete part number, e.g., A8188SLT-30 |



Always order by complete part number:

Part Number	Package	$R_{\theta JA}$
A8188SL-xx	8-Lead SOIC	108°C/W
A8188SLT-xx	3-Lead SOT-89/TO-243AA	258°C/W

where "-xx" is the required output voltage $(V_{O(nom)})$ in tenths (25 through 33), e.g., -30 = 3.0 volts.

A8188SL-xx

Dwg. PS-023

NOTE — There is an indeterminate resistance between terminals 2 and 4. For proper operation, terminals 2 and 4 must be externally connected together.

A8188SL-xx Maximum Allowable Total Average Output Current* with device mounted on 2.24" x 2.24" (56.9 mm x 56.9 mm) solder-coated copper-clad board in still air.

	Allowable Total Average (10 ms) Output Current in Milliamperes with T_J = 150°C, Duty Cycle = 100%†								
	V _I - V _O								
T _A	1.0	1.5	2.0	2.5	3.0	4.0	5 .0	6.0	7.0*
25°C	500	500	500	460	385	285	230	190	165
50°C	500	500	460	370	305	230	185	150	130
70°C	500	490	370	295	245	185	145	120	105
85°C	500	400	300	240	200	150	120	100	85

^{*} Absolute maximum peak output current rating for either output is 250 mA; absolute maximum input voltage is 10 V.

†
$$I_O = (T_I - T_A)/([V_I - V_O] R_{\theta JA} \times dc) = (150 - T_A)/([V_I - V_O] \times 108 \times 1.00)$$

Output current rating can be increased (to 250 mA maximum per output) by additional heat sinking or reducing the duty cycle. Conditions that produce excessive junction temperature will activate device thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

A8188SLT-xx Maximum Allowable Output Current with device mounted on 2.24" x 2.24" (56.9 mm x 56.9 mm) solder-coated copper-clad board in still air.

	Allowable Average (10 ms) Output Current in Milliamperes with T _J = 150°C, Duty Cycle = 100%†								
	V _I - V _O								
T _A	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0*
25°C	250	250	240	190	160	120	95	80	65
50°C	250	250	190	155	125	95	75	65	55
70°C	250	205	155	120	100	75	60	50	40
85°C	250	165	125	100	80	60	50	40	35

^{*} Absolute maximum input voltage is 10 V.

†
$$I_O = (T_I - T_A)/([V_I - V_O] R_{\theta IA} \times dc) = (150 - T_A)/([V_I - V_O] \times 258 \times 1.00)$$

Output current rating can be increased (to 250 mA maximum) by additional heat sinking or reducing the duty cycle. Conditions that produce excessive junction temperature will activate device thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

ELECTRICAL CHARACTERISTICS at T_A = +25°C (unless otherwise noted).

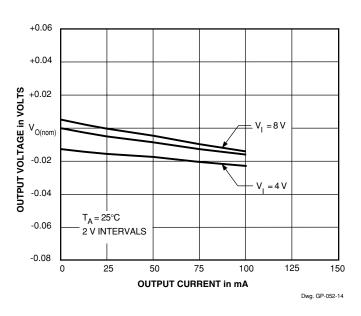
			Limits				
Characteristic Symbol		Test Conditions	Min.	Тур.	Max.	Units	
Output Voltage	Vo	$4 \text{ V} \le \text{V}_{\text{I}} \le 8 \text{ V}, 10 \mu\text{A} \le \text{I}_{\text{O}} \le 100 \text{mA*}$	-0.05	0.00	+0.05	V	
(reference specified V _{O(nom)})		$V_I = V_{O(nom)}$, $I_O = 60 \text{ mA}$	-0.30	_	_	V	
Output Volt. Temp. Coeff.	a _{VO}	$V_{I} = 6 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} \le 125^{\circ}\text{C}$	_	-0.30	_	mV/°C	
Line Regulation	$\Delta V_{O(\Delta VI)}$	4 V ≤ V _I ≤ 8 V, I _O = 1 mA	_	_	10	mV	
Load Regulation	$\Delta V_{O(\Delta IO)}$	1 mA ≤ I _O ≤ 100 mA*, V _I = 8 V	_	_	40	mV	
		1 mA ≤ I _O ≤ 100 mA*, V _I = 6 V	_	_	40	mV	
		1 mA ≤ I _O ≤ 100 mA*, V _I = 4 V	_	_	40	mV	
Dropout Voltage	V _I min – V _O	I _O = 60 mA	_	90	150	mV	
		I _O = 125 mA*	_	190	300	mV	
Quiescent Current	IQ	$V_{I} = 8 \text{ V}, I_{O} \le 1 \text{ mA}, V_{E} \ge 2.0 \text{ V}$	_	55	70	μА	
(GND terminal current)		$V_{I} = 8 \text{ V}, I_{O} \le 100 \text{ mA*}, V_{E} \ge 2.0 \text{ V}$	_	70	85	μА	
		V _I = V _{O(nom)} , I _O = 60 mA	_	200	_	μА	
	I _{Q(off)}	$4 \text{ V} \le \text{V}_{\text{I}} \le 8 \text{ V}, \text{ V}_{\text{E}} \le 0.8 \text{ V}$	_	_	1.0	μА	
ENABLE Input Voltage	V _{EH}	$4 \text{ V} \leq \text{V}_{\text{I}} \leq 8 \text{ V}$, Output ON	2.0	_	_	V	
	V _{EL}	$4 \text{ V} \leq \text{V}_{\text{I}} \leq 8 \text{ V}$, Output OFF	_	_	0.8	V	
ENABLE Input Current	I _E	V _E = V _I = 8 V	_	_	±1.0	μА	
Thermal Shutdown Temp.	T _J		150	_	_	°C	
Rejection Ratio	PSRR	V _I = V _{O(nom)} + 1.5 V, V _i = 100 mV, I _O = 10 mA:					
		f = 1 kHz	_	60	_	dB	
		f = 10 kHz	_	50		dB	
Noise	e _n	10 Hz \leq f \leq 100 kHz, I _O = 10 mA, C _O = 10 μF		2.0	_	μV/√ Hz	

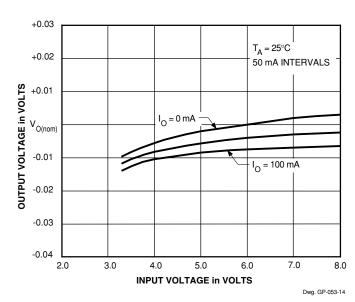
Typical values are at $T_A = +25$ °C and are given for circuit design information only.

^{*} Pulse test (≤20 ms). See previous page for duty cycle limitations.

TYPICAL CHARACTERISTICS

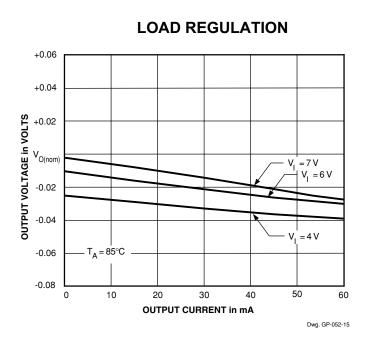
Dwg. GP-052-13

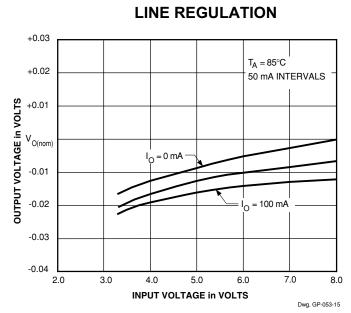

LOAD REGULATION

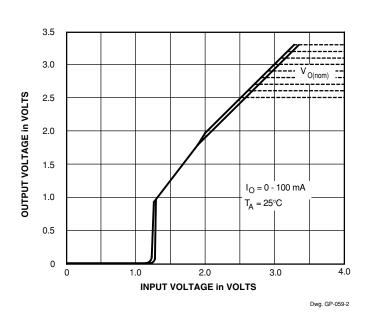

+0.06 +0.04 **OUTPUT VOLTAGE in VOLTS** +0.02 V_I = 8 V $V_1 = 6 V$ V_{O(nom)} -0.02 -0.04 $T_A = -20^{\circ}C$ -0.06 -0.08 125 25 50 75 100 150

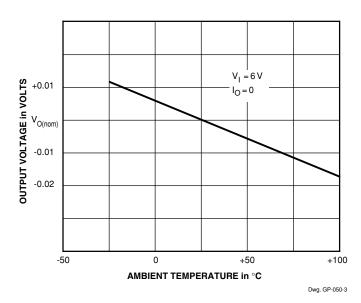
OUTPUT CURRENT in mA

LINE REGULATION

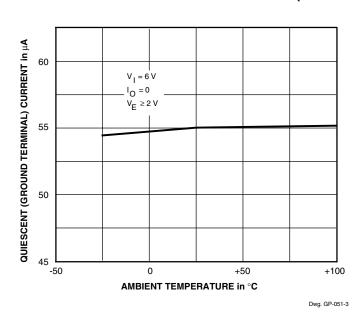


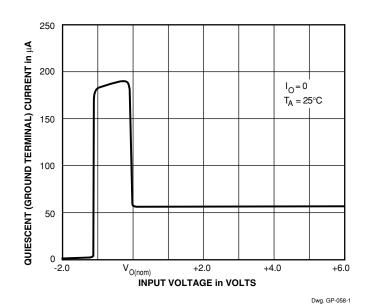


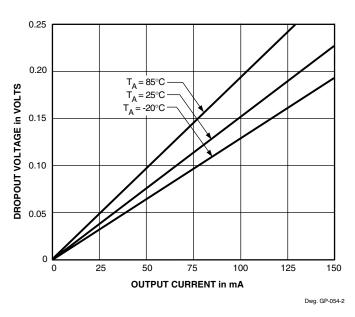

CAUTION: Maximum allowable duty cycle will be significantly less than 100% at high temperatures, at high input voltages, or at high output currents. See appropriate Maximum Allowable Output Current table.


TYPICAL CHARACTERISTICS (cont'd)

OUTPUT VOLTAGE



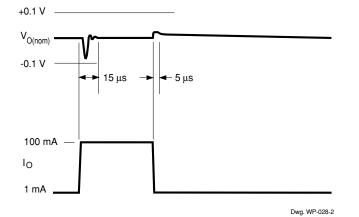

CAUTION: Maximum allowable duty cycle will be significantly less than 100% at high temperatures, at high input voltages, or at high output currents. See appropriate Maximum Allowable Output Current table.

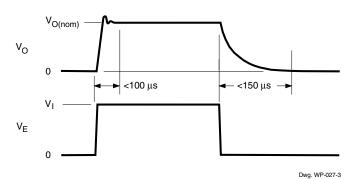

TYPICAL CHARACTERISTICS (cont'd)

QUIESCENT (GROUND TERMINAL) CURRENT

DROPOUT VOLTAGE

CAUTION: Maximum allowable duty cycle will be significantly less than 100% at high temperatures, at high input voltages, or at high output currents. See appropriate Maximum Allowable Output Current table.

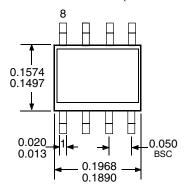

TYPICAL CHARACTERISTICS (concluded)

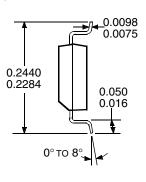

LOAD TRANSIENT PERFORMANCE

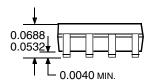
V_{I} = 3.2 V to 6.2 V, C_{O} = 4.7 $\mu F,\, T_{A}$ = 25°C

ENABLE TRANSIENT PERFORMANCE

 V_{I} = 3.2 V to 6.2 V, C_{O} = 1 $\mu F,\, T_{A}$ = 25°C

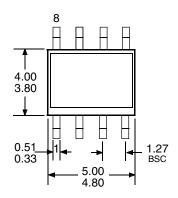


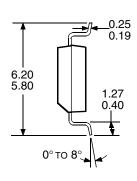


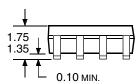

A8188SL-xx

Dimensions in Inches

(for reference only)



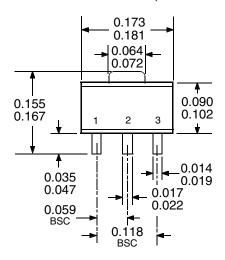


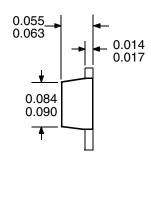


Dwg. MA-007-8 in

Dimensions in Millimeters (controlling dimensions)

Dwg. MA-007-8 mm

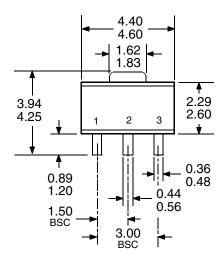

NOTES: 1. Lead spacing tolerance is non-cumulative.

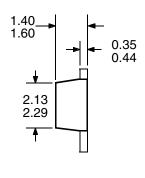

2. Exact body and lead configuration at vendor's option within limits shown.

A8188SLT-xx

Dimensions in Inches

(for reference only)

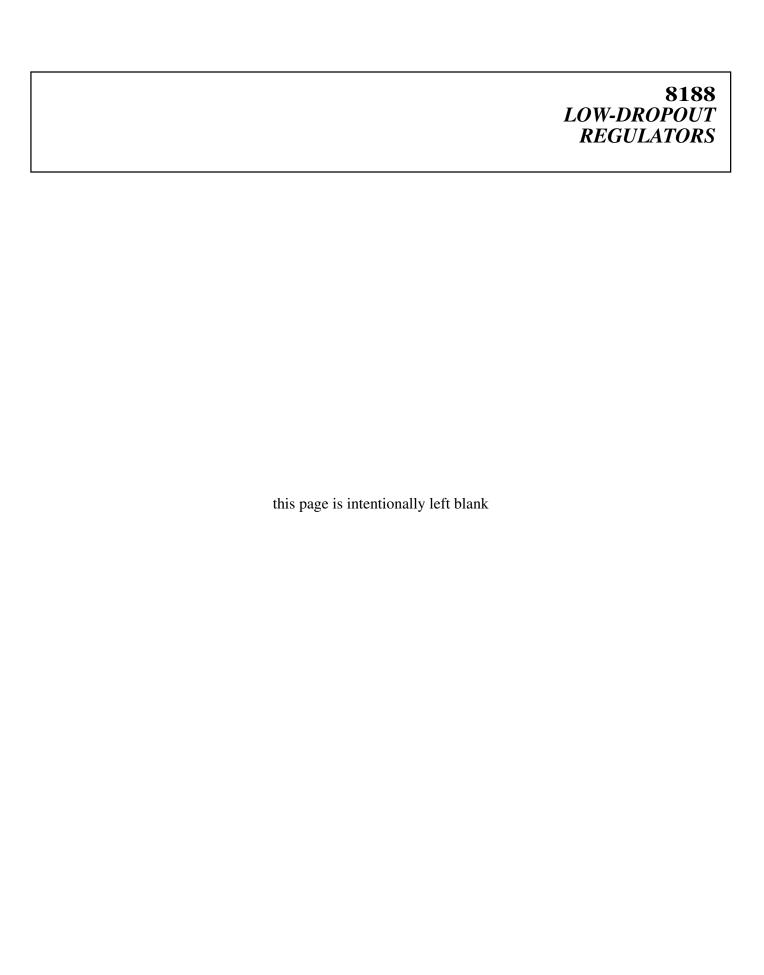




Dwg. MA-009-3 in

Dimensions in Millimeters

(controlling dimensions)



Dwg. MA-009-3 mm

NOTES: 1. Lead spacing tolerance is non-cumulative.

2. Exact body and lead configuration at vendor's option within limits shown.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

