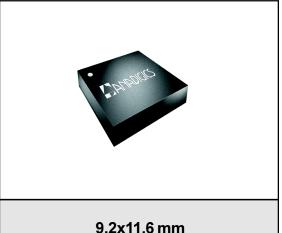


# AWT6107

EGSM/DCS Dual Band

3.5V GPRS Power Amplifier Module


Advanced Product Information Rev. 1, January 2001

### **FEATURES**

- InGaP HBT Technology
- High Efficiency 55% EGSM
- High Efficiency 50% DCS
- Low Leakage Current (5μA)
- SMT Module Package
- Small Footprint (9.2mm X 11.6mm)
- Low Profile (1.55 mm)
- 50Ω Input and Output Matching
- Minimal Number of External Components
- GPRS Capable (2 TX Slots)

### **APPLICATIONS**

- EGSM/DCS Dual Band Handsets/PDA
- GPRS Class 10



**MCM Module Package** 

# Description

The AWT6107 power amplifier module has been optimized for dual band operation (EGSM and DCS1800 bands). The amplifier is suitable for class 10 GPRS (2 TX Slots) handsets and similar communication systems. The module integrates practically all circuitry associated with the power amplifier function including bias management and matching components for  $50\Omega$  systems. This includes closed loop over control voltage protection making the amplifier extremely rugged. The maximum output power is achieved at a lower control voltage avoiding the need to use rail to rail operational amplifiers in the power control scheme.

The module uses a two stage EGSM power amplifier and a three stage DCS1800 power amplifier. Both power amplifier outputs have Vcc present at the output and require DC blocks when interfacing with other circuitry. The input signals have internal DC blocking and require no additional components.

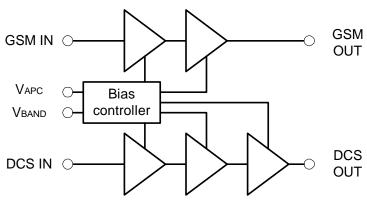



Figure 1: Block Diagram

#### AWT6107

## **Absolute Minimum and Maximum Ratings**

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of this data sheet. Exposure to maximum ratings for extended periods can adversely affect device reliability.

| SIGNAL                          | MIN | MAX    | UNITS |
|---------------------------------|-----|--------|-------|
| Supply Voltage (Vcc)            |     | +7     | V     |
| Input Power (RF <sub>IN</sub> ) |     | +15    | dBm   |
| Control Voltage (VAPC)          |     | + 4.3V | V     |
| Storage Temperature (Tstg)      | -55 | 150    | °C    |
| Operating Temperature (Tc)      | -25 | 85     | °C    |
| Maximum Reflow Temperature      |     | 235    | °C    |

**Table 1: Absolute Minimum and Maximum Ratings** 

#### **ESD Precautions**

Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Human body model HBM employed is resistance =  $1500\Omega$ , capacitance = 100pF.

| Parameter                              | Method | Rating | UNIT |
|----------------------------------------|--------|--------|------|
| ESD Threshold Voltage (RF Ports)       | НВМ    | TBD    | V    |
| ESD Threshold Voltage (Control Inputs) | НВМ    | TBD    | V    |
| ESD Threshold Voltage (RF Inputs)      | CDM    | TBD    | V    |
| ESD Threshold Voltage (Control Inputs) | CDM    | TBD    | V    |

Table 2: ESD Ratings

## Operating conditions

The part can be safely operated over these conditions, however, the parametric performance is only guaranteed to the conditions defined in the electrical specification.

| SIGNAL                                     | MIN | MAX | UNITS |
|--------------------------------------------|-----|-----|-------|
| Supply Voltage (Vcc)                       | 3.0 | 4.5 | ٧     |
| Leakage Current<br>(Vcc = 4.5V, VAPC = 0V) | 0   | 50  | μА    |
| Operating Temperature (Tc)                 | -20 | 75  | °C    |

**Table 3: Operating Conditions** 

# **Electrical Specification**

# **Power Control**

Unless otherwise specified:  $V_{CC}$  = 3.5V,  $Z_{IN}$  =  $Z_{OUT}$  =  $50\Omega$ ,  $T_{C}$  =  $25^{\circ}$ C  $\pm$  3, Pulse Width = 1154 $\mu$ s, Duty Cycle = 25%

| SIGNAL                     | MIN | MAX | UNITS |
|----------------------------|-----|-----|-------|
| Control Voltage (VAPC)     | 0   | 3.0 | V     |
| Control Voltage (IAPC)     | 0   | 0.1 | mA    |
| Operating Temperature (Tc) | -20 | 75  | °C    |

# **Table 4: Operating Conditions**

### EGSM:

Test Conditions:  $V_{\text{CC}}$  = 3.5V,  $Z_{\text{IN}}$  =  $Z_{\text{OUT}}$  =  $50\Omega$ ,  $T_{\text{C}}$  =  $25^{\circ}$ C  $\pm$  3,  $P_{\text{IN}}$  = 10dBm,  $P_{\text{WIDTH}}$  =  $1154\mu s$ , Duty Cycle = 25%,

 $V_{BAND} = LOW$ 

| PARAMETER                                                                         | SYMBOL | MIN  | TYP | MAX                    | UNITS             |
|-----------------------------------------------------------------------------------|--------|------|-----|------------------------|-------------------|
| Frequency                                                                         | fo     | 880  |     | 915                    | MHz               |
| Control Voltage for PMAX                                                          | VAPC   |      | 1.6 | 2.2                    | V                 |
| Input Power                                                                       | PIN    | 8    | 10  | 12                     | dBm               |
| Output Power (PiN = 10dBm)                                                        | Роит   | 34.5 |     |                        | dBm               |
| Power Added Efficiency                                                            | PAE    |      | 55  |                        | %                 |
| Degraded Output Power<br>Vcc = 3.0V, VAPC = 2.2V,<br>PIN = 8dBm, Tc= 75 °C        |        | 32   |     |                        | dBm               |
| Isolation / Min. Output Power<br>V <sub>APC</sub> = 0.2V, P <sub>IN</sub> = 12dBm | Рмім   |      |     | -30                    | dBm               |
| Harmonic<br>2 <sup>nd</sup><br>3 <sup>rd</sup><br>4fo to 12.75GHz                 |        |      |     | -4<br>-7<br>-7         | dBm<br>dBm<br>dBm |
| Stability: Load 5:1 VSWR<br>All phase angles                                      |        |      |     | -70 or<br>-36          | dBc<br>dBm        |
| Ruggedness: PIN = 12dBm,<br>Vcc = 4.5V, VAPC = 0.2 - 3.0V                         |        |      |     | 8:1 VSWR<br>All Phases |                   |
| Noise Power fo + 20MHz                                                            |        |      | -85 | -79                    | dBm/100 kHz       |
| Switching Time<br>VAPC on to 90% detected POUT                                    |        |      |     | 2                      | μS                |
| Input VSWR                                                                        |        |      |     | 2:1                    |                   |
| 2nd Harmonic power at DCS output                                                  |        |      |     | -20                    | dBm               |

**Table 5: EGSM Electrical Specification** 

# **Electrical Specification** DCS:

Test Conditions:  $V_{CC} = 3.5V$ ,  $Z_{IN} = Z_{OUT} = 50\Omega$ ,  $T_{C} = 25^{\circ}C \pm 3$ ,  $P_{IN} = 8dBm$ ,  $P_{WIDTH} = 1154\mu s$ , Duty Cycle = 25%,

V<sub>BAND</sub> = HIGH

| PARAMETER                                                                   | SYMBOL | MIN  | TYP | MAX                    | UNITS             |
|-----------------------------------------------------------------------------|--------|------|-----|------------------------|-------------------|
| Frequency                                                                   | fo     | 1710 | -   | 1785                   | MHz               |
| Control Voltage                                                             | Роит   |      | 1.6 | 2.2                    | V                 |
| Input Power                                                                 | Pin    | 6    | 8   | 10                     | dBm               |
| Output Power DCS (PIN = 8dBm)                                               | Роит   | 31.5 |     |                        | dBm               |
| Power Added Efficiency                                                      | PAE    |      | 50  |                        | %                 |
| Degraded Output Power<br>Vcc = 3.0V, VAPc = 2.2V,<br>PIN = 6dBm, Tc = 75 °C |        | 29.5 |     |                        | dBm               |
| Isolation<br>VAPC = 0.2V, PIN = 8dBm                                        |        |      |     | -30                    | dBm               |
| Harmonics<br>2 <sup>nd</sup><br>3 <sup>rd</sup><br>4fo to 12.75GHz          |        |      |     | -4<br>-7<br>-7         | dBm<br>dBm<br>dBm |
| Stability: Load 5:1 VSWR<br>All phase angles                                |        |      |     | -70 or<br>-36          | dBc<br>dBm        |
| Ruggedness: P <sub>IN</sub> = 10 dBm,<br>Vcc = 4.5V, Vapc = 0.2 - 3.0V      |        |      |     | 8:1 VSWR<br>All Phases |                   |
| Noise Power fo + 20MHz                                                      |        |      | -85 |                        | dBm/100 kHz       |
| Switching Time VAPC on to 90% detected Pout                                 |        |      |     | 2                      | μs                |
| Input VSWR                                                                  |        |      |     | 2:1                    |                   |

**Table 6: DCS Electrical Specification** 

# **Logic Level Definitions:**

The band select pin (VBAND) is used to select which amplifier will enabled by the voltage applied to the VAPC input.

| SIGNAL             | MIN | MAX | UNITS |
|--------------------|-----|-----|-------|
| Logic High         | 2   | 3   | V     |
| Logic Low          | 0   | 0.5 | V     |
| Input bias current |     | 10  | μА    |

**Table 7: Logic Level Definitions** 

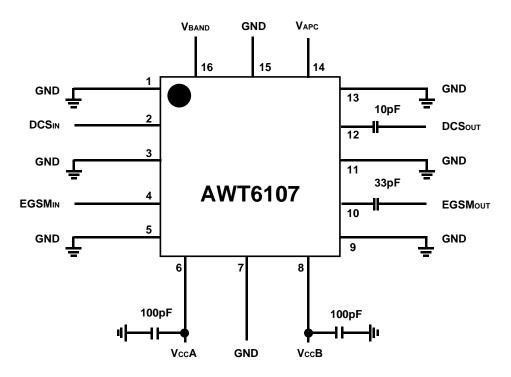



Figure 2: Evaluation Board Schematic

| Pin | Name    | Description                                |
|-----|---------|--------------------------------------------|
| 0   | GND     | Paddle                                     |
| 1   | GND     | Ground                                     |
| 2   | DCS_IN  | DCS RF input                               |
| 3   | GND     | Ground                                     |
| 4   | GSM_IN  | GSM RF input                               |
| 5   | GND     | Ground                                     |
| 6   | VCCA    | Supply voltage for bias and pre-amplifiers |
| 7   | GND     | Ground                                     |
| 8   | VCCB    | Supply Voltage for output stages           |
| 9   | GND     | Ground                                     |
| 10  | GSM_OUT | GSM RF output                              |
| 11  | GND     | Ground                                     |
| 12  | DCS     | DCS RF output                              |
| 13  | GND     | Ground                                     |
| 14  | VAPC    | Power Control                              |
| 15  | GND     | Ground                                     |
| 16  | VBAND   | Band Select                                |

**Table 8: Pin Descriptions** 

Dimensions in mm.

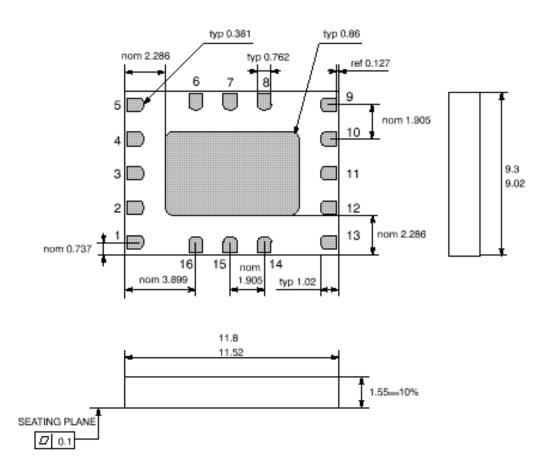



Figure 3: Package Outline Drawing (Bottom View)

**NOTES** 



ANADIGICS, Inc. 35 Technology Drive Warren, New Jersey 07059 Tel: (908) 668-5000

Fax: (908) 668-5132

http://www.anadigics.com Mktg@anadigics.com

#### **IMPORTANT NOTICE**

ANADIGICS, Inc. reserves the right to make changes to its products or discontinue any product at any time without notice. The Advanced Product data sheets and product specifications contained in this data sheet are subject to change prior to a products formal introduction. The information in this data sheet has been carefully checked and is assumed to be reliable. However, ANADIGICS assumes no responsibility for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

#### WARNING

ANADIGICS products are not intended for use in life support appliances, devices, or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.