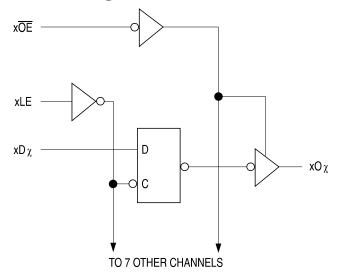
AT16373


Features

- Fastest Propagation Speeds in the Industry T_{PD (F grade)} = 2.5 ns, T_{PD (G grade)} = 2.0 ns
- Maximum derating for capacitive loads 1.5ns/100 pF (F grade) and 1.1ns/100 pF (G grade)
- Very low ground bounce < 0.6V @ V_{CC}=5.00V, T_a=25°C
- Excellent noise rejection
- Typical output skew ≤0.25ns
- Bus Hold circuitry to retain last active state during Tri-state™
- Available in SSOP and TSSOP packages

Description

Atmel's AT16373 devices provide maximum speed in temporary data storage. They can be operated as either two separate 8 bit latches or as a single 16-bit latch by use of the output enable and the latch enable. The AT16373 has very low ground bounce and excellent input noise rejection, giving the user stable signals in a high speed environment. These devices can drive very large loads while operating in a high speed transparent mode.

Functional Block Diagram⁽¹⁾

Note: 1. This 8-bit latch function is repeated a second time on each device.

Pin Configurations

Pin Names Descriptions			
xOE	Output Enable Input (Active Low)		
xLE	Latch Enable Inputs (Active High)		
xDχ	Data Inputs		
xOχ	Tri-State Outputs		

			SS	OP/TSSOP
1 0E	101	1	2	48 47 1D1 1LE
102	GND	3	4	$46 \begin{array}{c} 46 \\ 45 \end{array} = \begin{array}{c} 101 \\ \text{GND} \end{array}$
103	104	5	6	$\begin{array}{c} 44 \\ 43 \\ 1D4 \end{array} \begin{array}{c} 103 \\ 104 \end{array}$
VCC	105	7	8	42 41 105 VCC
106	GND	9	10	40 39 $$ GND $1D6$
107	108	11	12	38 37 + 108 107
201	202	13	14	36 35 = 2D2 2D1
GND	203	15	16	34 33 2D3 GND
204	VCC	17	18	32 $31 \stackrel{\square}{=} VCC$ $2D4$
205	206	19	20	30 2D5 29 2D6
GND	207	21	22	28 27 2D7 GND
208	2 <mark>0E</mark>	23	24	26 27 5 2D8 25 2LE 2D8
				T) (i

AT16373 Fast Logic[™] 16-Bit Transparent Latch

AT16373F AT16373G

0756B

Function Table⁽¹⁾

Inputs			Outputs
xDχ	xLE	xOE	xOχ
Н	Н	L	Н
L	Н	L	L
Х	Х	Н	Z

Note: 1. X = Don't Care, Z = High Impedance

Absolute Maximum Ratings*

Operating Temperature0°C to +70°C Storage Temperature65°C to +150°C	
Voltage on any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾	
Maximum Operating Voltage6.0V	

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes: 1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} +0.75V dc which may overshoot to +7.0V for pulses of less than 20 ns.

5.0 Volt DC Characteristics

Applicable over recommended	l operating range from T	$a = 0^{\circ}$ C to +70°C	$V_{CC} = +5.0V + -5\%$	(unless otherwise noted)
Applicable over recommended	i operating range nom i	$a = 0 \ 0 \ 10 + 10 \ 0$,	$V_{\rm UU} = +0.00 + -0.00$	uniess otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Δlcc	Quiescent Power Supply Current	$V_{CC} = Max, V_{IN} = 3.4V$		0.8	1.2	mA
VIH	Input High Voltage		2.0			V
VIL	Input Low Voltage				0.8	V
IIН	Input High Current	V _{IN} = V _{CC}			±15	μΑ
١L	Input Low Current	V _{IN} = GND			±15	μΑ
I _{OZ}	Output Leakage Current				±10	μΑ
V _{ОН} (1)	Output High Voltage F Grade only	V _{CC} = 4.75V IOH = -10 mA	2.7			V
V _{ОН} (2)	Output High Voltage G Grade only	V _{CC} = 4.75V I _{OH} = -12 mA	2.7			V
V _{OL}	Output Low Voltage (F Grade)	l _{OL} = 10 mA			0.55	V
V _{OL}	Output Low Voltage (G Grade)	l _{OL} = 12 mA			0.55	V

Note: 1. F grade: At V_{CC (max)}, the value of V_{OH(max)} = 3.75V and at V_{CC(min)}, V_{OH(max)} = 3.25V 2. G grade: At V_{CC (max)}, the value of V_{OH(max)} = 3.75V and at V_{CC(min)}, V_{OH(max)} = 3.35V

AC Characteristics AT16373F

Applicable over recommended operating range from $T_a = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V + -5\%$ (unless otherwise noted)

Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Тур	Max	Units
tphL tpLH	Propagation Delay xD χ to xO χ	C _L = 50 pF			2.5	ns
t _{PHL} t _{PLH}	Propagation Delay xLE to $xO\chi$	C _L = 50 pF			5.5	ns
tpzh tpzL	Output Enable	C _L = 50 pF			8.8	ns
tpHZ tpLZ	Output Disable	C _L = 50 pF			6.5	ns
t _{SK} (2)	Output Skew	CL = 50 pF			0.5	ns
∆t _{PHL} (2) ∆t _{PLH}	Propagation Delay vs Output Loading			1.3	1.5	ns/100 pF
t _{su}	Set-up Time	C _L = 50 pF	2.0			ns
tн	Hold Time	C _L = 50 pF	2.0			ns

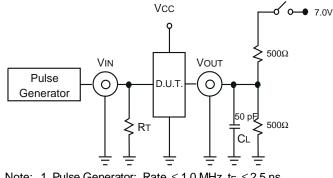
Note: 1. See test circuit and waveforms.

2. This parameter is guaranteed but not 100% tested.

AT16373G

Applicable over recommended operating range from $T_a = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V + -5\%$ (unless otherwise noted)

Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Тур	Max	Units
t _{PHL} t _{PLH}	Propagation Delay xD χ to xO χ	C _L = 50 pF			2.0	ns
tphl tplh	Propagation Delay xLE to $xO\chi$	C _L = 50 pF			5.0	ns
tpzh tpzL	Output Enable	C _L = 50 pF			8.8	ns
tphz tplz	Output Disable	C _L = 50 pF			6.0	ns
t _{SK} (2)	Output Skew	C _L = 50 pF			0.5	ns
∆t _{PHL} (2) ∆t _{PLH}	Propagation Delay vs Output Loading			0.9	1.1	ns/100 pF
t _{su}	Set-up Time	C _L = 50 pF	2.0			ns
tH	Hold Time	C _L = 50 pF	2.0			ns

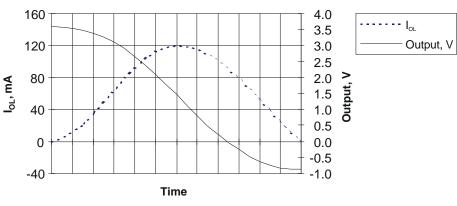

Note: 1. See test circuit and waveforms.

2. This parameter is guaranteed but not 100% tested.

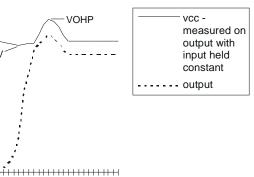
Test Circuits^(1,2)

- Note: 1. Pulse Generator: Rate \leq 1.0 MHz, t_F \leq 2.5 ns, $t_R \leq 2.5$ ns.
 - 2. AC tests are done with a single bit switching, and timings need to be derated when multiple outputs are switching in the same direction simultaneously. This derating should not exceed 0.5 ns for 16 inputs switching simultaneously.

IOL Pull Down Current


Switch Position

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open


Definitions:

C_L = Load capacitance; Includes jig and probe capacitance.

 R_T = Termination resistance; Should be equal to Z_{OUT} of the Pulse Generator.

Supply Bounce for Low to High Ground Bounce for High to Low Transitions⁽²⁾ **Transitions**⁽¹⁾ 4.5 3.5 VOHP gnd - measured on 4 3.0 output with input held constant 3.5 2.5 VOHV 3 output - - -2.0 2.5 Volts Volts 1.5 2 1.0 1.5

1

0 ++++++++++

0.5

AT16373

VOLV

0.5

0.0

-0.5

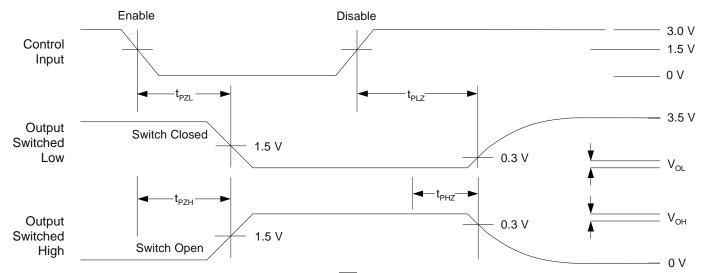
VOLF

-++++++++1++++

Time


Typical Values

Parameter	Value	Units
Volp	0.4	V
Volv	-0.26	V
Vohv	V _{CC} - 0.13	V
Vohp	V _{CC} + 0.6	V


Note: 1. When multiple outputs are switched at the same time, rapidly changing current on the ground and VCC paths causes a voltage to develop across the parasitic inductance of the wire bond and package pins. This occurrence is called simultaneous switching noise. Atmel's AT16373 products have minimized this phenomenon as shown on the graph. Output data is for 15 outputs switching simultaneously at a frequency of 1 MHz. The ground data is measured on the one remaining output, which is set to logic low and will reflect any device ground movement.
2. As on the graph for Ground Bounce, a similar condition occurs for low to high transitions. Output data is for 15 outputs

2. As on the graph for Ground Bounce, a similar condition occurs for low to high transitions. Output data is for 15 outputs switching simultaneously at a frequency of 1 MHz. V_{CC} droop is measured on the one remaining output pin, which is set to a logic high. This output will reflect any movement on the device V_{CC}.

Propagation Delay Waveforms

Enable and Disable Waveforms⁽¹⁾

Note: 1. Enable and disable waveforms are the same for both $x\overline{OE}$ and xLE inputs.

5-19

Ordering Information

T _{PD}	Ordering Code	Package	Operation Range
2.5 ns	AT16373F - 25YC AT16373F - 25XC	48Y 48X	Commercial
2.0 ns	AT16373G - 20YC AT16373G - 20XC	48Y 48X	Commercial

Package Type			
48X	48 Pin, Plastic Thin Shrink Small Outline Package (TSSOP)		
48Y	48 Pin, Plastic Shrink Small Outline Package (SSOP)		

AT16373