Austin Semiconductor, Inc.

128K x 8 EEPROM

EEPROM Memory

AVAILABLE AS MILITARY SPECIFICATIONS

• SMD 5962-38267

AS

• MIL-STD-883

FEATURES

- High speed: 150, 200, and 250ns
- Data Retention: 10 Years
- Low power dissipation, active current (20mW/MHz (TYP)), standby current (100 μ W(MAX))
- Single +5V ($\pm 10\%$) power supply
- Data Polling and Ready/Busy Signals
- Erase/Write Endurance (10,000 cycles in a page mode)
- Software Data protection Algorithm
- Data Protection Circuitry during power on/off
- Hardware Data Protection with RES pin
- Automatic Programming: Automatic Page Write: 10ms (MAX) 128 Byte page size

OPTIONS MARKINGS • Timing 150ns access -15 -20 200ns access 250ns access -25 • Packages No. 306 Ceramic Flat Pack F Radiation Shielded Ceramic FP* No. 305 SF Ceramic SOJ DCJ No. 508 • Operating Temperature Ranges -Military (-55°C to +125°C) XT

-Industrial (-40°C to +85°C) IT

***NOTE:** *Package lid is connected to ground (Vss).*

PIN NAME	FUNCTION
A0 to A16	Address input
I/O0 to I/O7	Data input/output
OE\	Output enable
CE/	Chip enable
WE\	Write enable
Vcc	Power supply
Vss	Ground
RDY/Busy\	Ready busy
RES\	Reset

PIN ASSIGNMENT

(Top View)

32-Pin CFP (F & SF), 32-Pin CSOJ (DCJ)

RDY/BUSY	1	32	Vcc
A 16	2	21	VCC A 15
AIO	2	51	AIS
A14	3	30	RES
A12	4	29	WE
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	OE\
A2	10	23	A10
A1	11	22	CE\
A0	12	21	I/O 7
I/O 0	13	20	I/O 6
I/O 1	14	19	I/O 5
I/O 2	15	18	I/O 4
Vss	16	17	I/O 3
			I

GENERAL DESCRIPTION

The Austin Semiconductor, Inc. AS58C1001 is a 1 Megabit CMOS Electrically Erasable Programmable Read Only Memory (EEPROM) organized as 131, 072 x 8 bits. The AS58C1001 is capable or in system electrical Byte and Page reprogrammability.

The AS58C1001 achieves high speed access, low power consumption, and a high level of reliability by employing advanced MNOS memory technology and CMOS process and circuitry technology and CMOS process and circuitry technology.

This device has a 128-Byte Page Programming function to make its erase and write operations faster. The AS58C1001 features Data Polling and a Ready/Busy signal to indicate completion of erase and programming operations.

This EEPROM provides several levels of data protection. Hardware data protection is provided with the RES pin, in addition to noise protection on the WE signal and write inhibit during power on and off. Software data protection is implemented using JEDEC Optional Standard algorithm.

The AS58C1001 is designed for high reliability in the most demanding applications. Data retention is specified for 10 years and erase/write endurance is guaranteed to a minimum of 10,000 cycles in the Page Mode.

> For more products and information please visit our web site at *www.austinsemiconductor.com*

Austin Semiconductor, Inc.

FUNCTIONAL BLOCK DIAGRAM

MODE SELECTION

AS

MODE	CE\	OE\	WE\	RES\	RDY/BUSY\ ¹	I/O
READ	V _{IL}	V _{IL}	V _{IH}	V _H	High-Z	D _{OUT}
STANDBY	V _{IH}	Х	Х	Х	High-Z	High-Z
WRITE	V _{IL}	V _{IH}	V _{IL}	V _H	High-Z to V_{OL}	D _{IN}
DESELECT	V _{IL}	V _{IH}	V _{IH}	V _H	High-Z	High-Z
WRITE	Х	Х	V _{IH}	Х		
INHIBIT	Х	V _{IL}	Х	Х		
DATA POLLING	V _{IL}	V _{IL}	V _{IH}	V _H	V _{OL}	Data Out (I/O7)
PROGRAM	Х	Х	Х	V _{IL}	High-Z	High-Z

Notes:

1. RDY/Busy\ output has only active LOW V_{OL} and HIGH impedance state. It can not go to HIGH (V_{OH}) state.

Austin Semiconductor, Inc. reserves the right to change products or specifications without notice.

Austin Semiconductor, Inc.

FUNCTIONAL DESCRIPTION

AUTOMATIC PAGE WRITE

The Page Write feature allows 1 to 128 Bytes of data to be written into the EEPROM in a single cycle and allows the undefined data within 128 Bytes to be written corresponding to the undefined address (A_0 to A_6). Loading the first Byte of data, the data load window of 30µs opens for the second. In the same manner each additional Byte of data can be loaded within 30µs. In case CE\ and WE\ are kept high for 100µs after data input, the EEPROM enters erase and write automatically and only the input data can be written into the EEPROM. In Page mode the data can be written and accessed 10^4 times per page, and in Byte mode 10^3 times per Byte.

DATA\ POLLING

Data\ Polling allows the status of the EEPROM to be determined. If the EEPROM is set to Read mode during a Write cycle, and inversion of the last Byte of data to be loaded outputs from I/O, to indicate that the EEPROM is performing a Write operation.

WRITE PROTECTION

(1) Noise protection: Noise on a write cycle will not act as a trigger with a WE $\$ pulse of less than 20ns.

(2) Write inhibit: Holding OE\ low, WE\ high or CE\ high, inhibits a write cycle during power on/off.

WE\ AND CE\ PIN OPERATION

During a write cycle, addresses are latched by the falling edge of WE\ or CE\, and data is latched by the rising edge of WE\ or CE\.

WRITE/ERASE ENDURANCE AND DATA RETENTION

The endurance with page programming is 10^4 cycles (1% cumulative failure rate) and the data retention time is more than 10 years when a device is programmed less than 10^4 cycles.

RDY/Busy\SIGNAL

RDY/Busy\ signal also allows status of the EEPROM to be determined. The RDY/Busy\ signal has high impedance except in write cycle and is lowered to V_{OL} after the first write signal. At the end of the write cycle, the RDY/Busy\ signal changes state to high impedance. This allows many 58C1001 devices RDY/Busy\ signal lines to be wired-OR together.

PROGRAMMING/ERASE

The 58C1001 does **NOT** employ a BULK-erase function. The memory cells can be programmed '0' or '1'. A write cycle performs the function of erase & write on every cycle with the erase being transparent to the user. The internal erase data state is considered to be '1'. To program the memory array with background of ALL 0's or All 1's, the user would program this data using the page mode write operation to program all 1024 128-byte pages.

DATA PROTECTION

To protect the data during operation and power on/off, the AS58C1001 has:

1. Data protection against Noise on Control Pins (CE\, OE\, WE\) during Operation. During readout or standby, noise on the control pins may act as a trigger and turn the EEPROM to programming mode by mistake. To prevent this phenomenon, the AS58C1001 has a noise cancellation function that cuts noise if its width is 20ns or less in programming mode. Be careful not to allow noise of a width of more than 20ns on the control pins.

3

Austin Semiconductor, Inc.

FUNCTIONAL DESCRIPTION (continued)

DATA PROTECTION (continued)

2. Data protection at Vcc on/off.

When RES\ is low, the EEPROM cannot be erased and programmed. Therefore, data can be protected by keeping RES\ low when Vcc is switched. RES\ should be high during programming because it does not provide a latch function. When Vcc is turned on or off, noise on the control pins generated by external circuits (CPU, etc.) may turn the EEPROM to programming mode by mistake. To prevent this unintentional programming, the EEPROM must be kept in an unprogrammable, standby or readout state by using a CPU reset signal to RES\ pin.

In addition, when RES\ is kept high at Vcc on/off timing, the input level of control pins (CE\, OE\, WE\) must be held as CE\=Vcc or OE\=LOW or WE\=Vcc level.

3. Software Data Protection

To protect against unintentional programming caused by noise generated by external circuits, AS58C1001 has a Software data protection function. To initate Software data protection mode, 3 bytes of data must be input, followed by a dummy write cycle of any address and any data byte. This exact sequence switches the device into protection mode. This 4th cycle during write is required to initiate the SDP and physically writes the address and data. While in SDP the entire array is protected in which writes can only occur if the exact SDP sequence is re-executed or the unprotect sequence is executed.

	Write Data
Write Address	(Normal Data Input)
2222	AA
★	★
2AAA	55
Ļ	↓
5555	AO

The Software data protection mode can be cancelled by inputting the following 6 Bytes. This changes the AS58C1001 to the Non-Protection mode, for normal operation.

Address	Data
5555	AA
\checkmark	↓
2AAA	55
¥	↓
5555	80
↓	↓
5555	AA
¥	↓
2AAA	55
¥	↓
5555	20

Austin Semiconductor, Inc.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	$0.5V$ to $+7.0V^{1}$
Voltage on any pin Relative to Vss	$0.6V$ to $+7.0V^{1}$
Storage Temperature	65°C to +150°C
Operating Temperature Range	55°C to +125°C
Soldering Temperature Range	260°C
Maximum Junction Temperature**	+150°C
Power Dissipation	1.0W

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

** Junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (-55°C $\leq T_{a} \leq 125$ °C; Vcc = 5V ±10%)

PARAMETER	CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		V _{IH}	2.2	V_{CC} + 0.3V	V	9
Input Low (Logic 0) Voltage ³		V _{IL}	-0.3	0.8	V	2
Input Voltage (RES\ Pin)		V _H	Vcc-0.5	V _{CC} +1.0	V	
Input Leakage Current ⁴	OV <u><</u> V _{IN} <u><</u> Vcc	I _{LI}	-2	2	μΑ	4
Output Leakage Current	Output(s) disabled, $OV \leq V_{OUT} \leq Vcc$	I _{LO}	-2	2	μΑ	
Output High Voltage	I _{OH} = -400 μA	V _{OH}	2.4		V	
Output Low Voltage	I _{OL} = 2.1 mA	V _{OL}		0.4	V	

				MAX]	
PARAMETER	CONDITIONS	SYM	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	I _{OUT} =OmA, Vcc = 5.5V Cycle=1μS, Duty=100%		20	20	20	mA	
	I _{OUT} =OmA, Vcc = 5.5V Cycle=MIN, Duty=100%	ICC3	65	55	50	mA	
Power Supply Current:	CE\=Vcc, Vcc = 5.5V	I _{CC1}	350	350	350	μA	
Standby	CE\=V _{IH} , Vcc = 5.5V	I _{CC2}	3	3	3	mA	

CAPACITANCE

PARAMETER	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C, f = 1MHz	C _{IN}	6	pF	
Output Capactiance	V _{IN} = 0	Со	12	pF	

AC ELECTRICAL CHARACTERISTICS FOR READ OPERATION (-55°C $\leq T_{c} \leq 125$ °C; Vcc = 5V ± 10 %)

Test Conditions

Input Pulse Levels:

0.0V to 3.0V

< 20ns

- Input rise and fall times:
- Output Load:

- 1 TTL Gate +100pF (including scope and jig) ing: 1.5V, 1.5V
- Reference levels for measuring timing:

		SVMBOL	-15		-20		-25		
	TEST CONDITION	STMDOL	MIN	MAX	MIN	MAX	MIN	MAX	01113
Address Access Time	CE\=OE\=V _{IL} WE\=V _{IH}	t _{ACC}		150		200		250	ns
Chip Enable Access Time	OE\=V _{IL} WE\=V _{IH}	t _{CE}		150		200		250	ns
Output Enable Acess Time	CE\=V _{IL} WE\=V _{IH}	t _{OE}	10	75	10	75	10	75	ns
Output Hold to Address Change	CE\=OE\=V _{IL} WE\=V _{IH}	t _{oн}	0		0		0		ns
Outrut Dissible to Ulink 7		t _{DF}	0	50	0	50	0	50	ns
Output Disable to High-Z	CE\=OE\=V _{IL} WE\=V _{IH}	t _{DFR}	0	350	0	350	0	350	ns
RES\ to Output Delay	CE\=OE\=V _{IL} WE\=V _{IH}	t _{RR}	0	450	0	450	0	450	ns

AC ELECTRICAL CHARACTERISTICS FOR SOFTWARE DATA PROTECTION CYCLE OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNITS
Byte Load Cycle Time	t _{BLC}	0.55	30	μS
Write Cycle Time	t _{WC}	10		mS

AC ELECTRICAL CHARACTERISTICS FOR DATA\ POLLING OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNITS
Output Enable Hold Time	t _{OEH}	0		ns
Output Enable to Write Setup Time	t _{OES}	0		ns
Write Start Time	t _{DW}	150		ns
Write Cycle Time	t _{WC}		10	ms

Austin Semiconductor, Inc.

AC ELECTRICAL CHARACTERISTICS FOR PAGE ERASE AND PAGE WRITE OPERATIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Address Setup Time	t _{AS}	0		ns
Write Enable to Write Setup Time	t _{WS} ⁸	0		ns
Chip Enable to Write Setup Time	t _{cs} ⁷	0		ns
Mrita Dulca Midth	t _{WP} ⁷	250		ns
	t _{CW} 9	250		ns
Address Hold Time	t _{AH}	150		ns
Data Setup Time	t _{DS}	100		ns
Data Hold Time	t _{DH}	10		ns
Write Enable Hold Time	t _{WH} ⁸	0		ns
Chip Enable Hold Time	t _{CH} ⁷	0		ns
Out Enable to Write Setup Time	t _{OES}	0		ns
Output Enable Hold Time	t _{OEH}	0		ns
Data Latch Time	t _{DL}	200		ns
Write Cycle Time	t _{WC}	10		ms
Byte Load Window	t _{BL}	100		μs
Byte Load Cycle	t _{BLC}	0.55	30	μs
Time to Device Busy	t _{DB}	120		ns
RES\ to Write Setup Time	t _{RP}	100		μs
Vcc to RES\ Setup Time	t _{RES} ¹¹	1		μs

Austin Semiconductor, Inc.

AC ELECTRICAL CHARACTERISTICS FOR BYTE ERASE AND BYTE WRITE OPERATIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Address Setup Time	t _{AS}	0		ns
Chip Enable to Write Setup Time	t _{CS} ⁷	0		ns
Write Pulse Width	t _{CW} ⁸	250		ns
	t _{WP} ⁷	250		ns
Address Hold Time	t _{AH}	150		ns
Data Setup Time	t _{DS}	100		ns
Data Hold Time	t _{DH}	10		ns
Chip Enable Hold Time	t _{CH} ⁷	0		ns
Out Enable to Write Setup Time	t _{OES}	0		ns
Output Enable Hold Time	t _{OEH}	0		ns
Write Cycle Time	t _{WC}	10		ms
Byte Load Window	t _{BL}	100		μs
Time to Device Busy	t _{DB}	120		ns
RES\ to Write Setup Time	t _{RP}	100		μs
Vcc to RES\ Setup Time	t _{RES} ¹⁰	1		μs

AC TEST CONDITIONS

AS

Input Pulse Levels	0V to 3V
Input Rise and Fall Times	≤20ns
Input Timing Reference Level	1.5V
Output Reference Level	1.5V
Output Load	See Figure 1

Figure 1 OUTPUT LOAD EQUIVALENT

NOTES:

- 1. Relative to Vss
- 2. V_{IN} min = -3.0V for pulse widths \leq 50ns
- 3. V_{IL} min = -1.0V for pulse widths \leq 50ns
- 4. I_{II} on RES = 100ua MAX
- 5. t_{OF} is defined as the time at which E the output becomes and open circuit and data is no longer driven.
- 6. Use this device in longer cycle than this value
- 7. WE\ controlled operation
- 8. CE\ controlled operation
- 9. **RES**\ pin V_{IH} is V_{H}
- 10. Reference only, not tested

SOFTWARE DATA PROTECTION TIMING WAVEFORM (non-protection mode)

DATA\ POLLING TIMING WAVEFORM

TOGGLE BIT WAVEFORM

PAGE WRITE TIMING WAVEFORM (WE\CONTROLLED)

PAGE WRITE TIMING WAVEFORM (CE\CONTROLLED)

BYTE WRITE TIMING WAVEFORM (WE\CONTROLLED)

BYTE WRITE TIMING WAVEFORM (CE\CONTROLLED)

Austin Semiconductor, Inc.

MECHANICAL DEFINITIONS*

ASI Case #305 (Package Designator SF) SMD 5962-38267, Case Outline N

	SMD SPECIFICATIONS		
SYMBOL	MIN	MAX	
А	0.125	0.150	
A1	0.090	0.110	
b	0.015	0.019	
С	0.003	0.007	
D	0.810	0.830	
D1	0.775	0.785	
D2	0.745	0.755	
E	0.425	0.445	
E1	0.290	0.310	
е	0.045	0.055	
Н	1.000	1.100	
L	0.290	0.310	
Q	0.026	0.037	

*All measurements are in inches.

AS

Austin Semiconductor, Inc.

MECHANICAL DEFINITIONS*

ASI Case #306 (Package Designator F) SMD 5962-38267, Case Outline M

	SMD SPECIFICATIONS		
SYMBOL	MIN	MAX	
A	0.097	0.123	
A1	0.090	0.110	
b	0.015	0.019	
C	0.003	0.007	
D	0.810	0.830	
D2	0.745	0.755	
E	0.425	0.445	
E1	0.330	0.356	
е	0.045	0.055	
H	1.000	1.100	
Ĺ	0.290	0.310	
Q	0.026	0.037	

NOTE: All drawings are per the SMD. ASI's package dimensional limits may differ, but they will be within the SMD limits.

AS

MECHANICAL DEFINITIONS*

ASI Case #508 (Package Designator DCJ)

	ASI PACKAGE SPECIFICATIONS		
SYMBOL	MIN	MAX	
А	0.132	0.142	
A1	0.076	0.086	
A2	0.018	0.028	
В	0.018	0.032	
b	0.015	0.019	
D	0.816	0.834	
D1	0.745	0.755	
E	0.430	0.440	
E1	0.465	0.485	
E2	0.415	0.425	
е	0.045	0.055	

*All measurements are in inches.

ORDERING INFORMATION

EXAMPLE: AS58C1001F-25/XT

Device Number	Package Type	Speed ns	Process
AS58C1001	F	-15	/*
AS58C1001	F	-20	/*
AS58C1001	F	-25	/*

EXAMPLE: AS58C1001SF-15/IT

Device Number	Package Type	Speed ns	Process
AS58C1001	SF	-15	/*
AS58C1001	SF	-20	/*
AS58C1001	SF	-25	/*

EXAMPLE: AS58C1001DCJ-20/IT

Device Number	Package Type	Speed ns	Process
AS58C1001	DCJ	-15	/*
AS58C1001	DCJ	-20	/*
AS58C1001	DCJ	-25	/*

***AVAILABLE PROCESSES**

IT = Industrial Temperature Range	-40°C to +85°C
XT = Extended Temperature Range	-55°C to +125°C
883C = Full Military Processing	-55°C to +125°C

ASI TO DSCC PART NUMBER CROSS REFERENCE*

Package Designator F

ASI Part #

<u>SMD Part#</u>

AS58C1001F-25/883C AS58C1001F-20/883C AS58C1001F-15/883C 5962-3826716QMA 5962-3826717QMA 5962-3826718QMA

Package Designator SF

ASI Part #

SMD Part#

AS58C1001SF-25/883C AS58C1001SF-20/883C AS58C1001SF-15/883C

5962-3826716QNA 5962-3826717QNA 5962-3826718QNA

Package Designator DCJ not currenly available on the SMD.

* ASI part number is for reference only. Orders received referencing the SMD part number will be processed per the SMD.