- Organization . . . 1048576 by 16 Bits
- Single 5-V Power Supply (±10% Tolerance)
- **Performance Ranges:**

|            | ACCESS | ACCESS | ACCESS | READ OR |
|------------|--------|--------|--------|---------|
|            | TIME   | TIME   | TIME   | WRITE   |
|            | tRAC   | tCAC   | tAA    | CYCLE   |
|            | MAX    | MAX    | MAX    | MIN     |
| '41x160-70 | 70 ns  | 18 ns  | 35 ns  | 130 ns  |
| '41x160-80 | 80 ns  | 20 ns  | 40 ns  | 150 ns  |

- **Enhanced Page-Mode Operation for Faster Memory Access**
- CAS-Before-RAS (CBR) Refresh
- Long Refresh Period
  - '416160 4096-Cycle Refresh in 32 ms (Maximum)
  - '418160 1024-Cycle Refresh in 8 ms (Maximum)
- **3-State Unlatched Output**
- **Low Power Dissipation**
- All Inputs/Outputs Are TTL Compatible
- **Packaging**

50-Lead, 650-Mil-Wide Ceramic Flatpack

**Operating Free-Air Temperature Range** -55°C to 125°C

## description

The SMJ41x160 series is a set of 16777216-bit dynamic random-access memories (DRAMs) organized as 1048576 words of 16 bits each.

They employ state-of-the-art technology for high performance, reliability, and low power at low cost.

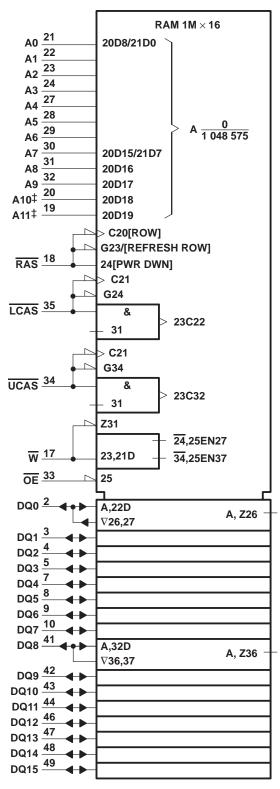
These devices feature maximum RAS access times of 70 ns and 80 ns. All addresses and data-in lines are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The SMJ41x160 series is offered in a 50-lead, 650-mil-wide ceramic flatpack and is characterized for operation from -55°C to 125°C.

#### **HKD PACKAGE** (TOP VIEW)

| $V_{CC}$         | 10 | 50 |   | $V_{SS}$ |
|------------------|----|----|---|----------|
| DQ0              | 2  | 49 |   | DQ15     |
| DQ1              | 3  | 48 |   | DQ14     |
| DQ2              | 4  | 47 |   | DQ13     |
| DQ3              | 5  | 46 |   | DQ12     |
| $V_{CC}$         | 6  | 45 |   | $V_{SS}$ |
| DQ4              | 7  | 44 |   | DQ11     |
| DQ5              | 8  | 43 |   | DQ10     |
| DQ6              | 9  | 42 |   | DQ9      |
| DQ7              | 10 | 41 |   | DQ8      |
| NC               | 11 | 40 |   | NC       |
| NC               | 12 | 39 |   | NC       |
| NC               | 13 | 38 |   | NC       |
| NC               | 14 | 37 |   | NC       |
| NC               | 15 | 36 |   | NC       |
| NC               | 16 | 35 |   | LCAS     |
| W                | 17 | 34 |   | UCAS     |
| RAS              | 18 | 33 |   | OE       |
| A11 <sup>†</sup> | 19 | 32 |   | A9       |
| A10 <sup>†</sup> | 20 | 31 |   | A8       |
| A0               | 21 | 30 |   | A7       |
| A1               | 22 | 29 |   | A6       |
| A2               | 23 | 28 |   | A5       |
| A3               | 24 | 27 |   | A4       |
| $V_{CC}$         | 25 | 26 |   | $V_{SS}$ |
|                  |    |    | l |          |

<sup>†</sup> A10 and A11 are NC for SMJ418160.

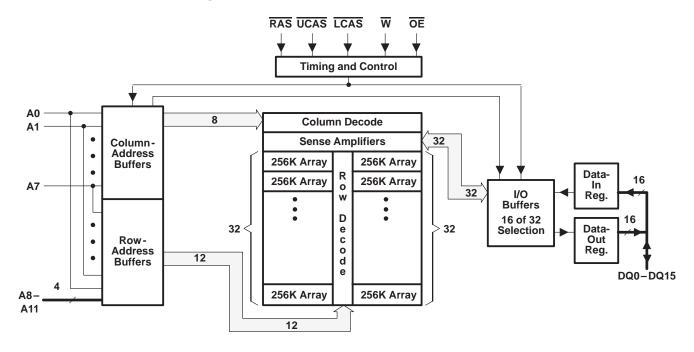

| PIN NOMENCLATURE                              |                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A0-A11 DQ0-DQ15 LCAS UCAS NC OE RAS VCC VSS W | Address Inputs Data In/Data Out Lower Column-Address Strobe Upper Column-Address Strobe No Internal Connection Output Enable Row-Address Strobe 5-V Supply Ground Write Enable |  |  |  |  |



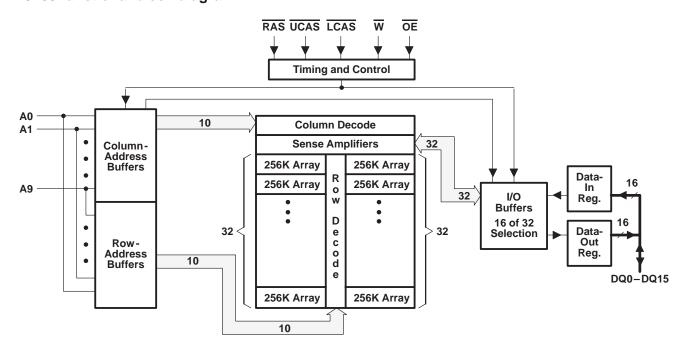
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



## logic symbol†




<sup>&</sup>lt;sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.




<sup>‡</sup> A10 and A11 are NC for SMJ418160.

## '416160 functional block diagram



## '418160 functional block diagram



# SMJ416160, SMJ418160 1048576 BY 16-BIT DYNAMIC RANDOM-ACCESS MEMORIES

SGMS720D - APRIL 1995 - REVISED SEPTEMBER 1997

### operation

#### dual CAS

Two  $\overline{\text{CAS}}$  pins ( $\overline{\text{LCAS}}$  and  $\overline{\text{UCAS}}$ ) are provided to give independent control of the 16 data-I/O pins (DQ0-DQ15), with  $\overline{\text{LCAS}}$  corresponding to DQ0-DQ7 and  $\overline{\text{UCAS}}$  corresponding to DQ8-DQ15. For read or write cycles, the column address is latched on the first  $\overline{\text{xCAS}}$  falling edge. Each  $\overline{\text{xCAS}}$  going low enables its corresponding DQx pin with data associated with the column address latched on the first falling  $\overline{\text{xCAS}}$  edge. All address-setup and -hold parameters are referenced to the first falling  $\overline{\text{xCAS}}$  edge. The delay time from  $\overline{\text{xCAS}}$  low to valid data out (see parameter  $\overline{\text{tCAC}}$ ) is measured from each individual  $\overline{\text{xCAS}}$  to its corresponding DQx pin.

In order to latch in a new column address, both  $\overline{xCAS}$  pins must be brought high. The column-precharge time (see parameter  $t_{CP}$ ) is measured from the last  $\overline{xCAS}$  rising edge to the first  $\overline{xCAS}$  falling edge of the new cycle. Keeping a column address valid while toggling  $\overline{xCAS}$  requires a minimum setup time,  $t_{CLCH}$ . During  $t_{CLCH}$ , at least one  $\overline{xCAS}$  must be brought low before the other  $\overline{xCAS}$  is taken high.

For early-write cycles, the data is latched on the first  $\overline{xCAS}$  falling edge. Only the DQs that have the corresponding  $\overline{xCAS}$  low are written into. Each  $\overline{xCAS}$  must meet  $\overline{t_{CAS}}$  minimum in order to ensure writing into the storage cell. To latch a new address and new data, all  $\overline{xCAS}$  pins must be high and meet  $t_{CP}$ .

#### enhanced page mode

Enhanced page-mode operation allows faster memory access by keeping the same row address while selecting random column addresses. The time for row-address setup and hold and address <u>multiplex</u> is eliminated. The maximum number of columns that can be accessed is determined by the maximum  $\overline{RAS}$  low time and the  $\overline{xCAS}$  page-mode <u>cycle</u> time used. With minimum  $\overline{xCAS}$  page-cycle time, all columns can be accessed without intervening  $\overline{RAS}$  cycles.

Unlike conventional page-mode DRAMs, the column-address buffers in this device are activated on the falling edge of  $\overline{RAS}$ . The buffers act as transparent or flow-through latches while  $\overline{xCAS}$  is high. The falling edge of the first  $\overline{xCAS}$  latches the column addresses. This feature allows the device to operate at a higher data bandwidth than conventional page-mode parts because data retrieval begins as soon as the column address is valid rather than when  $\overline{xCAS}$  goes low. This performance improvement is referred to as enhanced page mode. A valid column address can be presented immediately after row-address hold time ( $t_{RAH}$ ) has been satisfied, usually well in advance of the falling edge of  $\overline{xCAS}$ . In this case, data is obtained after access time from xCAS low ( $t_{CAC}$ ) maximum if access time from column address ( $t_{AA}$ ) maximum has been satisfied. In the event that column addresses for the next page cycle are valid at the time  $\overline{xCAS}$  goes high, minimum-access time for the next cycle is determined by access time from rising edge of the last  $\overline{xCAS}$  ( $t_{CPA}$ ).

#### address: A0-A11 ('416160) and A0-A9 ('418160)

Twenty address bits are required to decode one of the 1048576 storage-cell locations. For the SMJ416160, 12 row-address bits are set up on A0 through A11 and latched onto the chip by  $\overline{RAS}$ . Eight column-address bits are set up on A0 through A7 and latched onto the chip by the first  $\overline{xCAS}$ . For the SMJ418160, ten row-address bits are set up on A0–A9 and latched onto the chip by  $\overline{RAS}$ . Ten column-address bits are set up on A0–A9 and latched onto the chip by the first  $\overline{xCAS}$ . All addresses must be stable on or before the falling edge of  $\overline{RAS}$  and  $\overline{xCAS}$ .  $\overline{RAS}$  is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder.  $\overline{xCAS}$  is used as a chip select, activating its corresponding output buffer and latching the address bits into the column-address buffers.

## write enable (W)

The read or write mode is selected through  $\overline{W}$ . A logic high on  $\overline{W}$  selects the read mode and a logic low selects the write mode. The data inputs are disabled when the read mode is selected. When  $\overline{W}$  goes low prior to  $x\overline{CAS}$  (early write), data out remains in the high-impedance state for the entire cycle, permitting a write operation with  $\overline{OE}$  grounded.



#### data in (DQ0-DQ15)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of  $\overline{xCAS}$  or  $\overline{W}$  strobes data into the on-chip data latch. In an early-write cycle,  $\overline{W}$  is brought low prior to  $\overline{xCAS}$  and the data is strobed in by the first  $\overline{xCAS}$  occurrence with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle,  $\overline{xCAS}$  is low already and the data is strobed in by  $\overline{W}$  with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle,  $\overline{OE}$  must be high to bring the output buffers to the high-impedance state prior to impressing data on the I/O lines.

#### data out (DQ0-DQ15)

Data out is the same polarity as data in. The output is in the high-impedance (floating) state until  $\overline{xCAS}$  and  $\overline{OE}$  are brought low. In a read cycle, the output becomes valid after the access-time interval  $t_{CAC}$  begins with the negative transition of  $\overline{xCAS}$  as long as  $t_{RAC}$  and  $t_{AA}$  are satisfied.

## output enable (OE)

 $\overline{\text{OE}}$  controls the impedance of the output buffers. When  $\overline{\text{OE}}$  is high, the buffers remain in the high-impedance state. Bringing  $\overline{\text{OE}}$  low during a normal cycle activates the output buffers, putting them in the low-impedance state. It is necessary for both  $\overline{\text{RAS}}$  and  $\overline{\text{xCAS}}$  to be brought low for the output buffers to go into the low-impedance state, and they remain in the low-impedance state until either  $\overline{\text{OE}}$  or  $\overline{\text{xCAS}}$  is brought high.

## RAS-only refresh '416160

A refresh operation must be performed at least once every 32 ms to retain data. This can be achieved by strobing each of the 4096 rows (A0-A11). A normal-read or -write cycle refreshes all bits in each row that is selected. A  $\overline{RAS}$ -only operation can be used by holding both  $\overline{xCAS}$  at the high (inactive) level, conserving power as the output buffers remain in the high-impedance state. Externally generated addresses must be used for a  $\overline{RAS}$ -only refresh.

#### RAS-only refresh '418160

A refresh operation must be performed at least once every 8 ms to retain data. This can be achieved by strobing each of the 1024 rows (A0-A9). A normal-read or <u>-write</u> cycle refreshes all bits in each row that is selected. A  $\overline{RAS}$ -only operation can be used by holding both  $\overline{xCAS}$  at the high (inactive) level, conserving power as the output buffers remain in the high-impedance state. Externally generated addresses must be used for a  $\overline{RAS}$ -only refresh.

#### hidden refresh

Hidden refresh can be performed while maintaining valid data at the output pin. This is accomplished by holding  $\overline{\text{RAS}}$  at  $V_{\text{IL}}$  after a read operation and cycling  $\overline{\text{RAS}}$  after a specified precharge period, similar to a  $\overline{\text{RAS}}$ -only refresh cycle. The external address is ignored and the refresh address is generated internally.

## xCAS-before-RAS (xCBR) refresh

xCBR refresh is utilized by bringing at least one  $\overline{\text{xCAS}}$  low earlier than  $\overline{\text{RAS}}$  (see parameter  $t_{\text{CSR}}$ ) and holding it low after  $\overline{\text{RAS}}$  falls (see parameter  $t_{\text{CHR}}$ ). For successive xCBR refresh cycles,  $\overline{\text{xCAS}}$  can remain low while cycling  $\overline{\text{RAS}}$ . The external address is ignored and the refresh address is generated internally.

#### power up

To achieve proper device operation, an initial pause of 200  $\mu$ s followed by a minimum of eight initialization cycles is required after power up to the full V<sub>CC</sub> level. These eight initialization cycles must include at least one refresh (RAS-only or xCBR) cycle.



# SMJ416160, SMJ418160 1048576 BY 16-BIT DYNAMIC RANDOM-ACCESS MEMORIES

SGMS720D - APRIL 1995 - REVISED SEPTEMBER 1997

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage range, V <sub>CC</sub>                |                 |
|------------------------------------------------------|-----------------|
| Voltage range on any pin (see Note 1)                | – 1 V to 7 V    |
| Short-circuit output current                         | 50 mA           |
| Power dissipation                                    | 1 W             |
| Operating free-air temperature range, T <sub>A</sub> | - 55°C to 125°C |
| Storage temperature range, T <sub>stq</sub>          | - 65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# recommended operating conditions

|                 |                                      | MIN  | NOM | MAX | UNIT |
|-----------------|--------------------------------------|------|-----|-----|------|
| VCC             | Supply voltage                       | 4.5  | 5   | 5.5 | V    |
| VSS             | Supply voltage                       |      | 0   |     | V    |
| VIH             | High-level input voltage             | 2.4  |     | 6.5 | V    |
| V <sub>IL</sub> | Low-level input voltage (see Note 2) | - 1  |     | 0.8 | V    |
| T <sub>A</sub>  | Operating free-air temperature       | - 55 |     | 125 | °C   |

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.

NOTE 1: All voltage values are with respect to VSS.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

## SMJ416160

| PARAMETER           |                                                   |                                                                                                                            | '416160-70 |      | '416160-80 |      | UNIT |
|---------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|------|------------|------|------|
|                     | PARAMETER                                         | TEST CONDITIONST                                                                                                           | MIN        | MAX  | MIN        | MAX  | UNII |
| Vон                 | High-level output voltage                         | I <sub>OH</sub> = - 5 mA                                                                                                   | 2.4        |      | 2.4        |      | V    |
| VOL                 | Low-level output voltage                          | I <sub>OL</sub> = 4.2 mA                                                                                                   |            | 0.4  |            | 0.4  | V    |
| Ц                   | Input current (leakage)                           | $V_{CC} = 5.5 \text{ V}, \qquad V_I = 0 \text{ V to } 6.5 \text{ V},$<br>All others = 0 V to $V_{CC}$                      |            | ± 10 |            | ± 10 | μΑ   |
| IO                  | Output current (leakage)                          | $\frac{V_{CC}}{x_{CAS}} = 5.5 \text{ V}, \qquad V_{O} = 0 \text{ V to V}_{CC},$                                            |            | ± 10 |            | ± 10 | μΑ   |
| I <sub>CC1</sub> ‡§ | Read- or write-cycle current                      | V <sub>CC</sub> = 5.5 V, Minimum cycle                                                                                     |            | 80   |            | 70   | mA   |
|                     |                                                   | V <sub>IH</sub> = 2.4 V (TTL),<br>After one memory cycle,<br>RAS and xCAS high                                             |            | 2    |            | 2    | mA   |
| ICC2                | Standby current                                   | V <sub>IH</sub> = V <sub>CC</sub> - 0.2 V (CMOS),<br>After one memory cycle,<br>RAS and xCAS high                          |            | 1    |            | 1    | mA   |
| I <sub>CC3</sub> §  | Average refresh current (RAS only refresh or CBR) | VCC = 5.5 V, Minimum cycle,  RAS cycling,  XCAS high (RAS only),  RAS low after XCAS low (CBR)                             |            | 80   |            | 70   | mA   |
| I <sub>CC4</sub> ‡¶ | Average page current                              | $\frac{\text{V}_{CC}}{\text{RAS}} = 5.5 \text{ V}, \qquad \frac{\text{t}_{PC} = \text{MIN},}{\text{xCAS}} \text{ cycling}$ |            | 80   |            | 70   | mA   |
| ICC7 <sup>‡¶</sup>  | Standby current, outputs enabled                  | RAS = V <sub>IH</sub> , xCAS = V <sub>IL</sub> ,<br>Data out = enabled                                                     |            | 5    |            | 5    | mA   |

<sup>&</sup>lt;sup>†</sup> For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.

<sup>‡</sup> Measured with outputs open

<sup>§</sup> Measured with a maximum of one address change while RAS = V<sub>IL</sub>
¶ Measured with a maximum of one address change while xCAS = V<sub>IH</sub>

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### SMJ418160

|                     | DADAMETED                                         |                                                                                                                            | '418160-70 |      | '418160-80 |      | LINUT |
|---------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|------|------------|------|-------|
|                     | PARAMETER                                         | TEST CONDITIONS†                                                                                                           | MIN MAX    |      | MIN        | MAX  | UNIT  |
| Vон                 | High-level output voltage                         | I <sub>OH</sub> = - 5 mA                                                                                                   | 2.4        |      | 2.4        |      | ٧     |
| VOL                 | Low-level output voltage                          | I <sub>OL</sub> = 4.2 mA                                                                                                   |            | 0.4  |            | 0.4  | V     |
| Ц                   | Input current (leakage)                           | $V_{CC} = 5.5 \text{ V}, \qquad V_I = 0 \text{ V to } 6.5 \text{ V},$<br>All others = 0 V to $V_{CC}$                      |            | ± 10 |            | ± 10 | μΑ    |
| IO                  | Output current (leakage)                          | $\frac{\text{V}_{CC}}{\text{x}_{CAS}} = 5.5 \text{ V}, \qquad \text{V}_{O} = 0 \text{ V to V}_{CC},$                       |            | ± 10 |            | ± 10 | μΑ    |
| I <sub>CC1</sub> ‡§ | Read- or write-cycle current                      | V <sub>CC</sub> = 5.5 V, Minimum cycle                                                                                     |            | 180  |            | 170  | mA    |
|                     | Standby current                                   | V <sub>IH</sub> = 2.4 V (TTL),<br>After one memory cycle,<br>RAS and xCAS high                                             |            | 2    |            | 2    | mA    |
| ICC2                | Standby Current                                   | V <sub>IH</sub> = V <sub>CC</sub> - 0.2 V (CMOS),<br>After one memory cycle,<br>RAS and xCAS high                          |            | 1    |            | 1    | mA    |
| I <sub>CC3</sub> §  | Average refresh current (RAS only refresh or CBR) | VCC = 5.5 V, Minimum cycle, RAS cycling, xCAS high (RAS only), RAS low after xCAS low (CBR)                                |            | 180  |            | 170  | mA    |
| I <sub>CC4</sub> ‡¶ | Average page current                              | $\frac{\text{V}_{CC}}{\text{RAS}} = 5.5 \text{ V}, \qquad \frac{\text{t}_{PC} = \text{MIN},}{\text{xCAS}} \text{ cycling}$ |            | 180  |            | 170  | mA    |
| ICC7 <sup>‡¶</sup>  | Standby current, outputs enabled                  | RAS = V <sub>IH</sub> , xCAS = V <sub>IL</sub> ,<br>Data out = enabled                                                     |            | 5    |            | 5    | mA    |

<sup>†</sup> For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.

## capacitance over recommended ranges of supply voltage and operating free-air temperature, f = 1 MHz (see Note 3)

|                    | PARAMETER                                  | MIN | MAX | UNIT |
|--------------------|--------------------------------------------|-----|-----|------|
| C <sub>i(A)</sub>  | Input capacitance, A0-A11#                 |     | 8   | pF   |
| C <sub>i(OE)</sub> | Input capacitance, OE                      |     | 8   | pF   |
| C <sub>i(RC)</sub> | Input capacitance, xCAS and RAS            |     | 8   | pF   |
| C <sub>i(W)</sub>  | Input capacitance, $\overline{\mathbb{W}}$ |     | 8   | pF   |
| Co                 | Output capacitance                         |     | 10  | pF   |

<sup>#</sup> A10 and A11 are NC for SMJ418160.

NOTE 3: Capacitance is sampled only at initial design and after any major changes. Samples are tested at 0 V and 25°C with a 1-MHz signal applied to the pin under test. All other pins are open.



<sup>‡</sup> Measured with outputs open

<sup>§</sup> Measured with a maximum of one address change while  $\overline{RAS} = V_{\parallel L}$ 

<sup>¶</sup> Measured with a maximum of one address change while  $\overline{xCAS} = V_{IH}$ 

## switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Note 4)

|                 | PARAMETER                                        | '41x16                                                 | 0-70 | '41x16 | 0-80 | UNIT |
|-----------------|--------------------------------------------------|--------------------------------------------------------|------|--------|------|------|
|                 | PARAMETER                                        | 35 40<br>18 20<br>40 45<br>70 80<br>18 20<br>0 18 0 20 | MAX  | OIVII  |      |      |
| t <sub>AA</sub> | Access time from column address                  |                                                        | 35   |        | 40   | ns   |
| tCAC            | Access time from xCAS low                        |                                                        | 18   |        | 20   | ns   |
| tCPA            | Access time from column precharge                |                                                        | 40   |        | 45   | ns   |
| tRAC            | Access time from RAS low                         |                                                        | 70   |        | 80   | ns   |
| tOEA            | Access time from OE low                          |                                                        | 18   |        | 20   | ns   |
| tOFF            | Output disable time after xCAS high (see Note 5) | 0                                                      | 18   | 0      | 20   | ns   |
| tOEZ            | Output disable time after OE high (see Note 5)   | 0                                                      | 18   | 0      | 20   | ns   |

NOTES: 4. Valid data is presented at the outputs after all access times are satisfied but can go from the high-impedance state to an invalid-data state prior to the specified access time as the outputs are driven when  $\overline{xCAS}$  and  $\overline{OE}$  are low.

5. topp and topz are specified when the output is no longer driven. The outputs are disabled by bringing either OE or xCAS high.

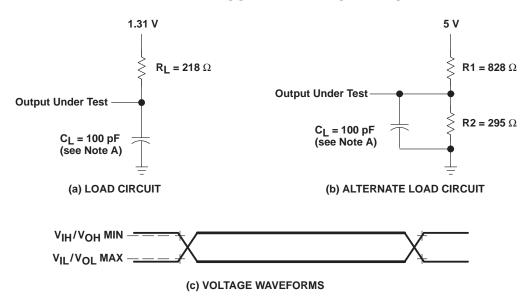
## timing requirements

|                  |                                                                                                | '41x1 | 60-70   | '41x160-80 |         | UNIT |
|------------------|------------------------------------------------------------------------------------------------|-------|---------|------------|---------|------|
|                  |                                                                                                | MIN   | MAX     | MIN        | MAX     | UNII |
| t <sub>RC</sub>  | Cycle time, read (see Note 6)                                                                  | 130   |         | 150        |         | ns   |
| t <sub>WC</sub>  | Cycle time, write (see Note 6)                                                                 | 130   |         | 150        |         | ns   |
| t <sub>RWC</sub> | Cycle time, read-write (see Note 6)                                                            | 181   |         | 205        |         | ns   |
| t <sub>PC</sub>  | Cycle time, page-mode read or write (see Notes 6 and 7)                                        | 45    |         | 50         |         | ns   |
| tPRWC            | Cycle time, page-mode read-write (see Note 6)                                                  | 96    |         | 105        |         | ns   |
| tRASP            | Pulse duration, RAS low, page mode (see Note 8)                                                | 70    | 100 000 | 80         | 100 000 | ns   |
| tRAS             | Pulse duration, RAS low, nonpage mode (see Note 8)                                             | 70    | 10 000  | 80         | 10 000  | ns   |
| tCAS             | Pulse duration, xCAS low (see Note 9)                                                          | 18    | 10 000  | 20         | 10 000  | ns   |
| t <sub>RP</sub>  | Pulse duration, RAS high (precharge)                                                           | 50    |         | 60         |         | ns   |
| tWP              | Pulse duration, $\overline{W}$ low                                                             | 10    |         | 10         |         | ns   |
| <sup>t</sup> ASC | Setup time, column address before xCAS going low                                               | 0     |         | 0          |         | ns   |
| <sup>t</sup> ASR | Setup time, row address before RAS going low                                                   | 0     |         | 0          |         | ns   |
| tDS              | Setup time, data (see Note 10)                                                                 | 0     |         | 0          |         | ns   |
| <sup>t</sup> RCS | Setup time, W high before xCAS going low                                                       | 0     |         | 0          |         | ns   |
| tCWL             | Setup time, W low before xCAS going high                                                       | 18    |         | 20         |         | ns   |
| <sup>t</sup> RWL | Setup time, W low before RAS going high                                                        | 18    |         | 20         |         | ns   |
| twcs             | Setup time, $\overline{W}$ low before $\overline{xCAS}$ going low (early-write operation only) | 0     |         | 0          |         | ns   |
| <sup>t</sup> CAH | Hold time, column address after xCAS low                                                       | 15    |         | 15         |         | ns   |
| <sup>t</sup> DH  | Hold time, data (see Note 10)                                                                  | 15    |         | 15         |         | ns   |
| <sup>t</sup> RAH | Hold time, row address after RAS low                                                           | 10    |         | 10         |         | ns   |
| <sup>t</sup> RCH | Hold time, W high after xCAS high (see Note 11)                                                | 0     |         | 0          |         | ns   |
| <sup>t</sup> RRH | Hold time, W high after RAS high (see Note 11)                                                 | 0     |         | 0          |         | ns   |
| tWCH             | Hold time, W low after xCAS low (early-write operation only)                                   | 15    |         | 15         |         | ns   |

NOTES: 6. All cycle times assume  $t_T = 5$  ns, referenced to  $V_{IH(MIN)}$  and  $V_{IL(MAX)}$ .

- 7. To assure tpc min, tasc should be  $\geq$  to tcp.
- 8. In a read-write cycle, t<sub>RWD</sub> and t<sub>RWL</sub> must be observed.
- 9. In a read-write cycle, t<sub>CWD</sub> and t<sub>CWL</sub> must be observed.
- 10. Referenced to the later of  $\overline{xCAS}$  or  $\overline{W}$  in write operations
- 11. Either t<sub>RRH</sub> or t<sub>RCH</sub> must be satisfied for a read cycle.

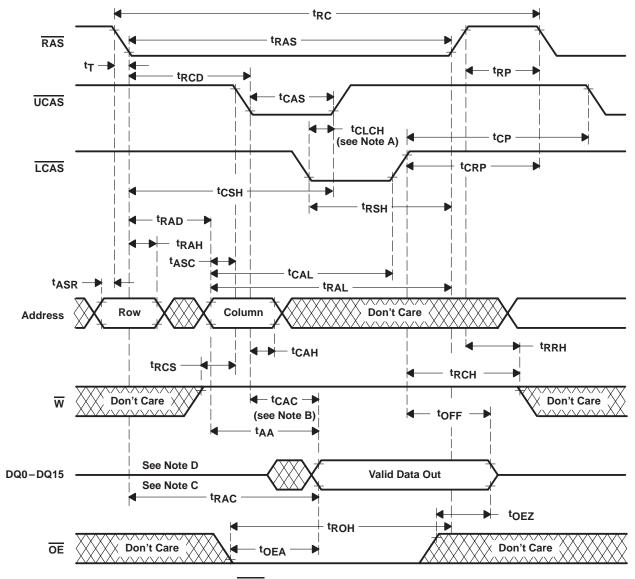



# SMJ416160, SMJ418160 1048576 BY 16-BIT DYNAMIC RANDOM-ACCESS MEMORIES SGMS720D – APRIL 1995 – REVISED SEPTEMBER 1997

## timing requirements (continued)

|                   |                                                                                                         |         | '41x16 | 60-70 | '41x10 | 60-80 |      |
|-------------------|---------------------------------------------------------------------------------------------------------|---------|--------|-------|--------|-------|------|
| 1                 |                                                                                                         |         | MIN    | MAX   | MIN    | MAX   | UNIT |
| <sup>t</sup> CLCH | Hold time, xCAS low to xCAS going high                                                                  |         | 5      |       | 5      |       | ns   |
| <sup>t</sup> RHCP | Hold time, RAS low after xCAS precharge                                                                 |         | 40     |       | 45     |       | ns   |
| <sup>t</sup> OEH  | Hold time, OE command                                                                                   |         | 18     |       | 20     |       | ns   |
| <sup>t</sup> ROH  | Hold time, RAS referenced to OE                                                                         |         | 10     |       | 10     |       | ns   |
| t <sub>CP</sub>   | Delay time, xCAS high (precharge)                                                                       |         | 10     |       | 10     |       | ns   |
| tAWD              | Delay time, column address to $\overline{\mathrm{W}}$ going low (read-write operation only)             |         | 63     |       | 70     |       | ns   |
| <sup>t</sup> CHR  | Delay time, RAS low to xCAS going high (CBR refresh only)                                               |         | 10     |       | 10     |       | ns   |
| <sup>t</sup> CRP  | Delay time, xCAS high to RAS going low                                                                  |         | 5      |       | 5      |       | ns   |
| tCSH              | Delay time, RAS low to xCAS going high                                                                  |         | 70     |       | 80     |       | ns   |
| tCSR              | Delay time, xCAS low to RAS going low (CBR refresh only)                                                |         | 5      |       | 5      |       | ns   |
| tCWD              | Delay time, $\overline{\text{xCAS}}$ low to $\overline{\text{W}}$ going low (read-write operation only) |         | 46     |       | 50     |       | ns   |
| tOED              | Delay time, OE to data                                                                                  |         | 18     |       | 20     |       | ns   |
| <sup>t</sup> RAD  | Delay time, RAS low to column address (see Note 12)                                                     |         | 15     | 35    | 15     | 40    | ns   |
| <sup>t</sup> RAL  | Delay time, column address to RAS going high                                                            |         | 35     |       | 40     |       | ns   |
| tCAL              | Delay time, column address to xCAS going high                                                           |         | 35     |       | 40     |       | ns   |
| <sup>t</sup> RCD  | Delay time, RAS low to xCAS low (see Note 12)                                                           |         | 20     | 52    | 20     | 60    | ns   |
| <sup>t</sup> RPC  | Delay time, RAS high to xCAS going low                                                                  |         | 0      |       | 0      |       | ns   |
| <sup>t</sup> RSH  | Delay time, xCAS low to RAS going high                                                                  |         | 18     |       | 20     |       | ns   |
| tRWD              | Delay time, RAS low to W going low (read-write operation only)                                          |         | 98     |       | 110    |       | ns   |
| tCPW              | Delay time, $\overline{W}$ going low after $\overline{xCAS}$ precharge (read-write operation only       | )       | 68     |       | 75     |       | ns   |
| toee              | Refresh time interval                                                                                   | '416160 |        | 32    |        | 32    | ms   |
| <sup>t</sup> REF  | Nenesh ume mervar                                                                                       | '418160 |        | 8     |        | 8     |      |
| t <sub>T</sub>    | Transition time (see Note 13)                                                                           |         | 3      | 30    | 3      | 30    | ns   |

NOTES: 12. The maximum value is specified only to ensure access time.

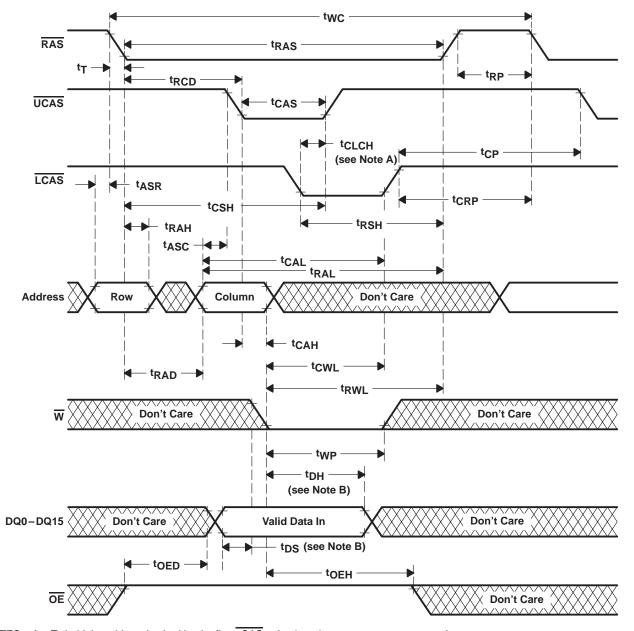

<sup>13.</sup> Transition times (rise and fall) should be a minimum of 3 ns and a maximum of 30 ns. This is ensured by design but not tested.



NOTES: A. C<sub>L</sub> includes probe and fixture capacitance.

B. The ac timing parameters are specified with reference to the minimum valid high-level voltage and the maximum valid low-level voltage for each signal. This corresponds to 2.4 V and 0.8 V for inputs; 2.4 V and 0.4 V for outputs with the given load circuit.

Figure 1. Load Circuits and Voltage Waveforms



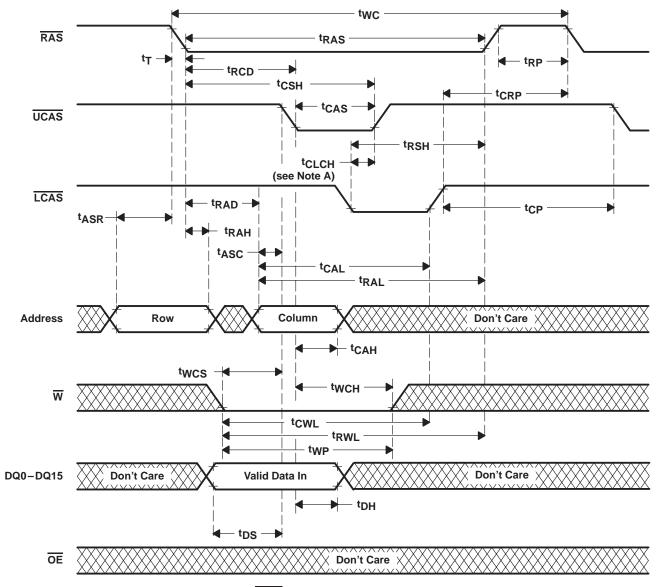

- B.  $t_{CAC}$  is measured from  $\overline{x_{CAS}}$  to its corresponding DQx.
- C. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.
- D. xCAS order is arbitrary.

Figure 2. Read-Cycle Timing



#### PARAMETER MEASUREMENT INFORMATION



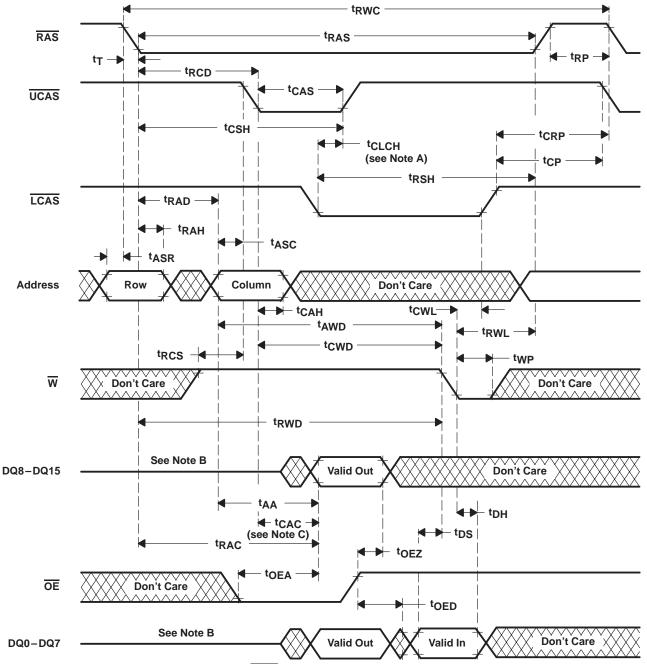

NOTES: A. To hold the address lat<u>ched by the first  $\overline{xCAS}$  going low, the parameter t<sub>CLCH</sub> must be met.</u>

B. Referenced to the first  $\overline{xCAS}$  or  $\overline{W}$ , whichever occurs last

C.  $\overline{xCAS}$  order is arbitrary.

Figure 3. Write-Cycle Timing

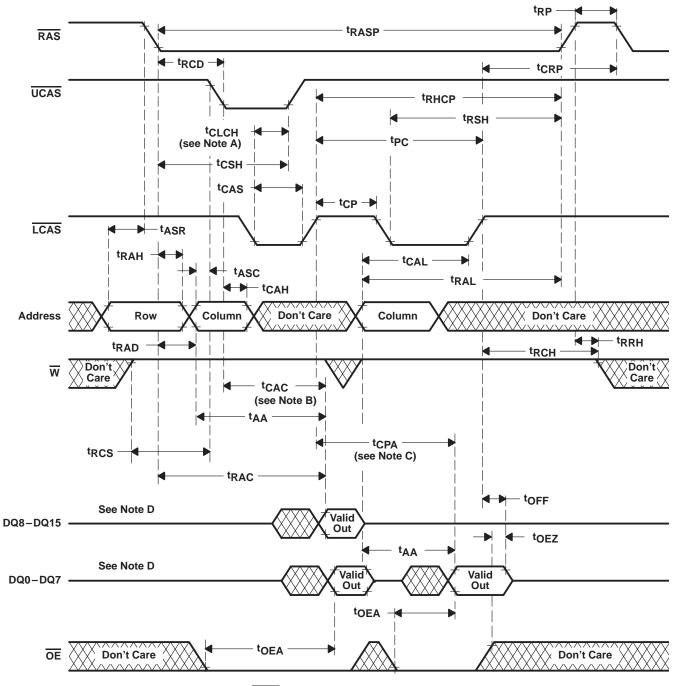





NOTES: A. To hold the address latched by the first xCAS going low, the parameter t<sub>CLCH</sub> must be met.

B. xCAS order is arbitrary.

Figure 4. Early-Write-Cycle Timing

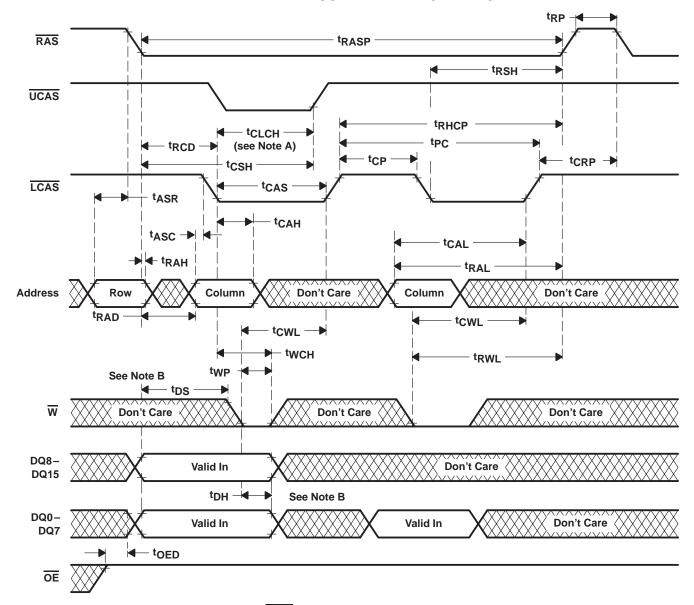





- B. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.
- C.  $\underline{t_{CAC}}$  is measured from  $\underline{x_{CAS}}$  to its corresponding DQx.
- D. xCAS order is arbitrary.

Figure 5. Read-Modify-Write-Cycle Timing

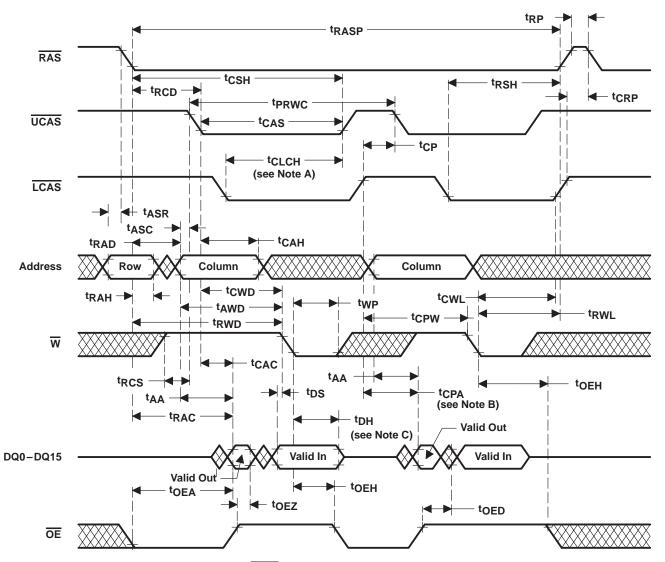





- B.  $t_{CAC}$  is measured from  $\overline{xCAS}$  to its corresponding DQx.
- C. Access time is  $t_{\mbox{CPA}}$  or  $t_{\mbox{AA}}$ -dependent.
- D. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.
- E. A write cycle or read-modify-write cycle can be mixed with the read cycles as long as the write- and read-modify-write timing specifications are not violated.
- F. xCAS order is arbitrary.

Figure 6. Enhanced-Page-Mode Read-Cycle Timing

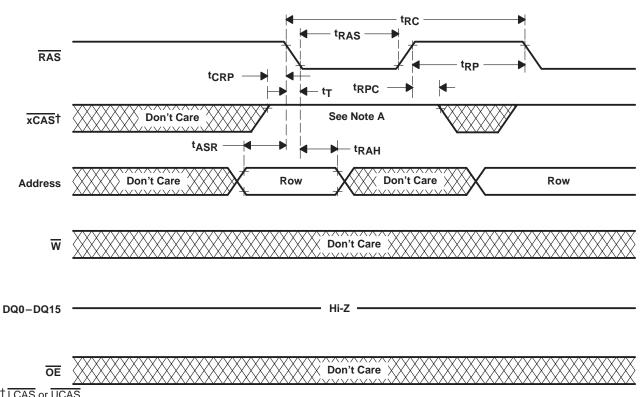



#### PARAMETER MEASUREMENT INFORMATION



- B. Referenced to the first xCAS or W, whichever occurs last
- C. A read cycle or read-modify-write cycle can be mixed with the write cycles as long as the read- and read-modify-write timing specifications are not violated.
- D. xCAS order is arbitrary.

Figure 7. Enhanced-Page-Mode Write-Cycle Timing






- B. Access time is t<sub>CPA</sub>- or t<sub>AA</sub>-dependent.
- C. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.
- D. xCAS order is arbitrary.
- E. A read or write cycle can be intermixed with read-modify-write cycles as long as the read- and write-cycle timing specifications are not violated.
- F.  $t_{CAC}$  is measured from  $\overline{x_{CAS}}$  to its corresponding DQx.

Figure 8. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing





 $^\dagger \overline{\text{LCAS}}$  or  $\overline{\text{UCAS}}$  NOTE A: All  $_{xCAS}$  must be high.

Figure 9. RAS-Only Refresh-Cycle Timing

## PARAMETER MEASUREMENT INFORMATION

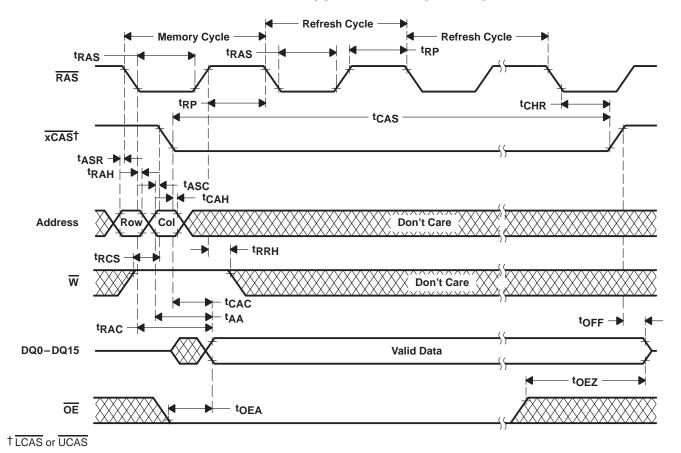



Figure 10. Hidden-Refresh-Cycle Timing



OUMO720D - AF NIE 1995 - NE VIOLE GEF TEMBEN 199

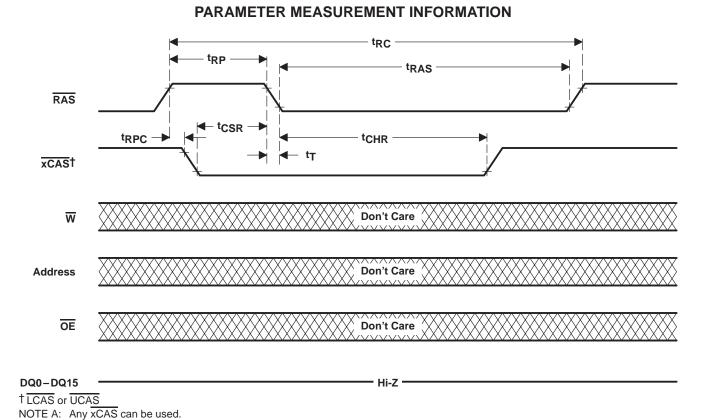
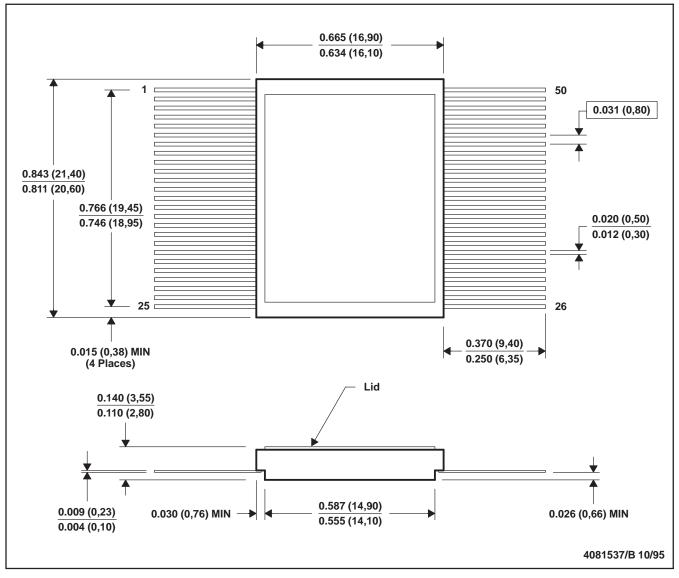




Figure 11. Automatic-xCBR-Refresh-Cycle Timing

#### **MECHANICAL DATA**

## HKD (R-CDFP-F50)

#### **CERAMIC DUAL FLATPACK**



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. The leads will be gold plated.



# SMJ416160, SMJ418160 1048576 BY 16-BIT DYNAMIC RANDOM-ACCESS MEMORIES SGMS720D – APRIL 1995 – REVISED SEPTEMBER 1997

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated