

4.0A Low Dropout Voltage Regulator

B1150

Adjustable & Fix Output

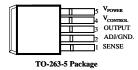
Description

The Bay Linear B1150 is Monolithic low power 4.0A Adjustable and fixed NPN voltage regulator that are easy to use with minimum external components. It is suitable for applications requiring a well-regulated positive output voltage with low input-output differential voltage requirements and output voltage 1.5V, 2.5V, 3.0V, 3.3V, or 5V.

The B1150 Outstanding features include full power usage up to 4.0Amp of load current internal current limiting and thermal shutdown. Other fixed versions are also available consult with factory.

The B1150 is offered in a 5-pin TO-220, & TO-263 packages compatible with other 5 terminal regulators.

Features


- Adjustable Output Down to 1.2V
- Fixed Output Voltages 2.5V, 3.0V 3.3V, and 5.0V
- **Output Current of 4.0A**
- Low Dropout Voltage 700mV Typ.
- **Current & Thermal Limiting**
- Standard 3-Terminal Low Cost TO-220, D² Packages
- Similar to industry Standard IRU1150

Applications

- 3.3V to 2.5V for Pentium Processor
- **SMPS Post Regulator**
- High Efficiency "Green" Computer **Systems**
- **High Efficiency Linear Power Supplies**
- 5V to 3.XXV fro Pentium Processor
- **Battery Charger**

Pin Connection

Ordering Information

Devices	Package	Temp.
B1150T	TO-220	0 °C to 70 °C
B1150S	TO-263	0 °C to 70 °C

Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Maximum Input Voltage	V_{IN}	7	V
Power Dissipation	P_{O}	Internally Limited	W
Thermal Resistance Junction to Case	$\theta_{ m JC}$	3	°C/W
Thermal Resistance Junction to Ambient	$ heta_{ m JA}$	50	
Operating Junction Temperature Range Control Section Power Transistor	T_J	0 to 125 0 to 150	°C
Storage Temperature Range	T_{STG}	-65 to 150	
Lead Temperature (Soldering 10 Sec.)	$T_{ m LEAD}$	260	

Electrical Characteristics

 $(V_{IN} = 4.75 \text{V to } 5.25 \text{V}; I_{O} = 10 \text{mA to } 4.0 \text{Amp, unless otherwise specified})$

Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Output Voltage	V_{O}	$V_{CONT}=4V, V_{PWR}=2V$	1.485	1.5	1.515	V
		V_{CONT} =3V, V_{PWR} =2.3V, I_{LOAD} =10mA to 4A	1.475		1.525	
		$V_{CONT}=5V$, $V_{PWR}=3.3V$	2.475	2.5	2.525	
		V_{CONT} =4V, V_{PWR} =3.3V, I_{LOAD} =10mA to 4A	2.460		2.540	
		V_{CONT} =5.5V, V_{PWR} =3.5V	2.970	3.0	3.030	
		V_{CONT} =4.5V, V_{PWR} =3.8V, I_{LOAD} =10mA - 4A	2.950		3.050	
		V_{CONT} =5.8V, V_{PWR} =3.8V	3.267	3.3	3.333	
		V_{CONT} =4.8V, V_{PWR} =4.1V, I_{LOAD} =10mA - 4A	3.247		3.353	
		V_{CONT} =7.5V, V_{PWR} =5.5V	4.950	5.0	5.050	
		V_{CONT} =6.5V, V_{PWR} =5.8V, I_{LOAD} =10mA-4A	4.920		5.080	
Reference Voltage	V_{ref}	V_{CONT} =2.75V, V_{PWR} =2V, I_{LOAD} =10mA	1.238	1.250	1.262	V
		$V_{CONT}=2.7V$, to 12V	1.230		1.270	
		V_{PWR} =3.3V to 5.5V, I_{LOAD} =10mA to 4A				
Line Regulation (1)	REG (line)	$I_{O} = 10 \text{mA}, V_{IN} = 5 \text{V}, T = 25 ^{\circ}\text{C}$		0.04	0.2	%
Load Regulation (1)	DEC	I 10 A W 5W T 25 9C		0.08	0.40	
Load Regulation (1)	REG _(LOAD)	$I_{O} = 10$ mA, $V_{IN} = 5$ V, $T = 25$ °C		0.08	0.40	
Dropout Voltage	V_{PWR} - V_{OUT}	$V_{CONT}=V_{OUT}+2.5V$, $I_{LOAD}=4A$		0.55	0.70	V
Minimum load Current	I_{\min}			5	10	mA
Current Limit	I_S	$(V_{in}-V_{out})=3V$	4	5		A
Ground Pin Current	I_{O}	$V_{IN} = 5V$		5	10	mA
Temperature Stability	T_{S}	$I_O = 10$ mA, $V_{IN} = 5$ V		0.5		%
Thermal Regulation		T= 25 °C, 30ms pulse		0.003		%/W
Ripple Rejection	R_A	$T= 25 ^{\circ}\text{C}, V_{\text{IN}} = 5V$	60	75		dB
Thermal Resistance	-	TO-220 Junction to Tab		3.0	3.0	°C/W
		Junction to Ambient		60	60	
		DD Package Junction to Tab		3.0	3.0	
		Junction to Ambient		60	60	

Note: Output Switch tests are performed under pulsed conditions to minimize power dissipation

LIFE SUPPORT AND NUCLEAR POLICY
The application circuit examples are only to explain the representative applications of the devices and are not intended to guarantee any circuit design or permit any industrial property right to other rights to execute. Bay Linear takes no responsibility for any problems related to any industrial property right resulting from the use of the contents shown in the data book. Typical parameters can and do vary in different applications. Customer's technical experts must validate all operating parameters including "Typical" for each customer application.
Preliminary Information- These data sheets contain minimum and maximum specifications that are based on the initial device characterizations. These limits are subject to change upon the completion of the full characterization over the specified temperature and supply voltage ranges.
Advance Information- These data sheets contain descriptions of products that are in development. The specifications are based on the engineering calculations, computer simulations and/ or initial prototype evaluation.

Bay Linear products are not authorized for and should not be used within life support systems which are intended for surgical implants into the body to support or sustain life, in aircraft, space equipment, submarine, or nuclear facility applications without the specific written consent of Bay Linear President.

Pay Lincon Inc	2478 Armstrong Street Livermore, CA 94550, Tel. (925) 989-7144, Fax: (925) 940-9556
Day Linear, inc	24/8 Armstrong Street, Livermore, CA 94550 Tel: (925) 989-7144, Fax: (925) 940-9556