CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

FEATURES

- FOUR-QUADRANT MULTIPLICATION
- LOW GAIN TC: $2 p p m /{ }^{\circ} \mathrm{C}$ typ
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- SINGLE 5V TO 15V SUPPLY
- TTL/CMOS LOGIC COMPATIBLE
- LOW OUTPUT LEAKAGE: 10nA max
- LOW OUTPUT CAPACITANCE: 70pF max
- DIRECT REPLACEMENT FOR AD7545, PM-7545

DESCRIPTION

The DAC7545 is a low-cost CMOS, 12 -bit fourquadrant multiplying, digital-to-analog converter with input data latches. The input data is loaded into the DAC as a 12 -bit data word. The data flows through to the DAC when both the chip select $(\overline{\mathrm{CS}})$ and the write $(\overline{\mathrm{WR}})$ pins are at a logic low.
Laser-trimmed thin-film resistors and excellent CMOS voltage switches provide true 12 -bit integral and differential linearity. The device operates on a single +5 V to +15 V supply and is available in 20-pin plastic DIP or 20-lead plastic SOIC packages. Devices are specified over the commercial.

The DAC7545 is well suited for battery or other low power applications because the power dissipation is less than 0.5 mW when used with CMOS logic inputs and $V_{D D}=+5 \mathrm{~V}$.

SPECIFICATIONS

ELECTRICAL

$\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT } 1}=0 \mathrm{~V}, \mathrm{ACOM}=\mathrm{DCOM}$, unless otherwise specified.

PARAMETER	GRADE	DAC7545				UNITS	TEST CONDITIONS/COMMENTS
		$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$			
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {MAX }}$ - $_{\text {MIN }}{ }^{(1)}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {MAX }}$ - $_{\text {MIN }}{ }^{(1)}$		
STATIC PERFORMANCE Resolution Accuracy	All						
		12	12	12	12	Bits	
	J	± 2	± 2	± 2	± 2	LSB	
	K	± 1	± 1	± 1	± 1	LSB	
	L	$\pm 1 / 2$	LSB				
	GL	$\pm 1 / 2$	LSB				
Differential Nonlinearity	J	± 4	± 4	± 4	± 4	LSB	
	K	± 1	± 1	± 1	± 1	LSB	10-Bit Monotonic, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$
	L	± 1	± 1	± 1	± 1	LSB	12-Bit Monotonic, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$
	GL	± 1	± 1	± 1	± 1	LSB	12-Bit Monotonic, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$
Gain Error (with internal $\left.\mathrm{R}_{\mathrm{FB}}\right)^{(2)}$	J	± 20	± 20	± 25	± 25	LSB	$\int \mathrm{D} / \mathrm{A}$ register loaded with $\mathrm{FFF}_{\mathrm{H}}$.
	K	± 10	± 10	± 15	± 15	LSB	$\{$ Gain error is adjustable using
	L	± 5	± 6	± 10	± 10	LSB	the circuits in Figures 2 and 3.
	GL	± 2	± 3	± 6	± 7	LSB	
Gain Temperature Coefficient ${ }^{(3)}$ (Δ Gain/ Δ Temperature)	All	± 5	± 5	± 10	± 10	ppm $/{ }^{\circ} \mathrm{C}$	Typical value is $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
						V $\mathrm{V}_{\mathrm{DD}}=+$	
DC Supply Rejection(3)$\left(\Delta\right.$ Gain $\left./ \Delta \mathrm{V}_{\mathrm{DD}}\right)$							
	All	0.015	0.03	0.01	0.02	\%/\%	$\Delta \mathrm{V}_{\mathrm{DD}} \pm 5 \%$
Output Leakage Current at Out 1	J, K, L, GL	10	50	10	50	nA	$\mathrm{DB}_{0}-\mathrm{DB}_{11}=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V}$
DYNAMIC PERFORMANCE Current Settling Time ${ }^{(3)}$	All	2	2	2	2		To 1/2 L SB Out Load $=1000$
	All	2	2		2		DAC output measured from falling edge of $\overline{\mathrm{WR}} . \overline{\mathrm{CS}}=0 \mathrm{~V}$
Propagation Delay ${ }^{(3)}$ (from digital input change to 90% of final analog output)	All						
		300		250		ns	Out $_{1}$ Load $=100 \Omega . \mathrm{C}_{\text {EXT }}=13 \mathrm{pF}^{(4)}$
Glitch Energy	All	400		250		$n V-s^{(5)}$	$V_{\text {REF }}=A C O M$
AC Feedback at $\mathrm{I}_{\text {OUT }} 1$	All	5	5	5	5	$m \vee p-p^{(5)}$	$V_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ Sine Wave
REFERENCE INPUT Input Resistance (pin 19 to AGND)	All						
		7	7	7	7	$\mathrm{k} \Omega^{(6)}$	Input resistance $\mathrm{TC}=300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}{ }^{(5)}$
		25	25	25	25	$k \Omega$	
AC OUTPUTS							
Output Capacitance ${ }^{(3)}$: $\mathrm{C}_{\text {OUT 1 }}$	All	70	70	70	70	pF	$\mathrm{DB}_{0}-\mathrm{DB}_{11}=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V}$
	All	200	200	200	200	pF	$\mathrm{DB}_{0}-\mathrm{DB}_{11}=\mathrm{V}_{\mathrm{DD}} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V}$
DIGITAL INPUTS							
$\mathrm{V}_{\text {IH }}$ (Input HIGH Voltage)	All	2.4	2.4	13.5	13.5	$V{ }^{(6)}$	
VIL (Input LOW Voltage)	All	0.8	0.8	1.5	1.5	V	
$\mathrm{I}_{\text {IN }}$ (Input Current) ${ }^{(7)}$	All	± 1	± 10	± 1	± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ or V_{DD}
$\text { Input Capacitance }{ }^{(3)}: \frac{\mathrm{DB}_{0}-\mathrm{DB}_{11}}{\mathrm{WR}, \overline{\mathrm{CS}}}$	All	5	5	5	5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
	All	20	20	20	20	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
SWITCHING CHARACTERISTICS ${ }^{(8)}$	All						See Timing Diagram
Chip Select to Write Setup Time, $\mathrm{t}_{\text {CS }}$		280	380	180	200	$\mathrm{ns}{ }^{(6)}$	
		200	270	120	150	$\mathrm{ns}{ }^{(5)}$	$\mathrm{t}_{\mathrm{CS}} \geq \mathrm{t}_{\text {WR }}, \mathrm{t}_{\mathrm{CH}} \geq 0$
Chip Select to Write Hold Time, t_{CH}	All	0	0	0	0	$n s^{(6)}$	
Write Pulse Width, $\mathrm{t}_{\text {WR }}$	All	250	400	160	240	$n \mathrm{~s}^{(6)}$	
		175	280	100	170	$n s^{(5)}$	
Data Setup Time, $\mathrm{t}_{\text {DS }}$	All	140	210	90	120	$n s^{(6)}$	
		100	150	60	80	$\mathrm{ns}{ }^{(5)}$	
Data Hold Time, ${ }_{\text {DH }}$	All	10	10	10	10	$n s^{(6)}$	
POWER SUPPLY, I_{DD}							
	All	2	2		2	mA	All Digital Inputs V_{IL} or V_{IH}
	All	100	500	100	500	$\mu \mathrm{A}$	All Digital Inputs $0 V$ or $V_{D D}$
	All	10	10	10	10	$\mu \mathrm{A}^{(5)}$	All Digital Inputs 0 V or V_{DD}

NOTES: (1) Temperature ranges-J, K, L, GL: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (2) This includes the effect of 5 ppm max, gain TC. (3) Guaranteed but not tested. (4) $\mathrm{DB}_{0}-\mathrm{DB}_{11}=0 \mathrm{~V}$ to V_{DD} or V_{DD} to OV . (5) Typical. (6) Minimum. (7) Logic inputs are MOS gates. Typical input current $\left(+25^{\circ} \mathrm{C}\right)$ is less than 1 nA . (8) Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.

[^0]
ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

$T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

V_{DD} to DGND ...-0.3V, +17	
Digital Input to DGND ... 0.3 V	
$V_{\text {RFB }}, V_{\text {REF }}$, to DGND	$\pm 25 \mathrm{~V}$
$V_{\text {PIN } 1}$ to DGND	-0.3V, V_{DD}
AGND to DGND	-0.3V, V_{DD}
Power Dissipation: Any Package to $+75^{\circ} \mathrm{C}$	450 mW
Derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature:	
Commercial J, K, L, GL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	. $+300^{\circ} \mathrm{C}$

NOTE: (1) Stresses above those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections o this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integral circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PIN CONNECTIONS

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER $^{(1)}$
DAC7545JP	20-Pin PDIP	222
DAC7545KP	20-Pin PDIP	222
DAC7545LP	20-Pin PDIP	222
DAC7545GLP	20-Pin PDIP	222
DAC7545JU	20-Pin SOIC	221
DAC7545KU	20-Pin SOIC	221
DAC7545LU	20-Pin SOII	221
DAC7545GLU	20-Pin SOIC	221

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION
$\left.\begin{array}{|l|c|c|c|c|}\hline \text { PRODUCT } & \text { PACKAGE } & \begin{array}{c}\text { TEMPERATURE } \\ \text { RANGE }\end{array} & \begin{array}{c}\text { RELATIVE } \\ \text { ACCURACY (LSB) }\end{array} & \begin{array}{c}\text { GAIN ERROR (LSB) } \\ \text { V } \\ \text { DD }\end{array}=+5 \mathrm{~V}\end{array}\right)$

WRITE CYCLE TIMING DIAGRAM

DAC7545 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	OUT 1	13	DB_{3}
2	AGND	14	DB_{2}
3	AGND	15	$\mathrm{DB}_{1}(\mathrm{LSB})$
4	DGND	16	$\overline{D_{0}}$
5	DB11	17	$\overline{\mathrm{CS}}$
6	DB10	18	$\overline{\mathrm{WR}}$
7	DB9	19	$\overline{\mathrm{XYR}}$
8	DB8	20	$\mathrm{~V}_{\mathrm{DD}}$
9	DB7	21	$\mathrm{~V}_{\text {REF }}$
10	DB6	22	$\mathrm{R}_{\text {FB }}$
11	DB_{5}	23	OUT $_{1}$
12	DB_{4}		

Substrate Bias: Isolated. NC: No Connection

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	$136 \times 134 \pm 5$	$3.45 \times 3.40 \pm 0.13$
Die Thickness	20 ± 3	0.51 ± 0.08
Min. Pad Size	4×4	0.10×0.10
Metalization		

DISCUSSION OF SPECIFICATIONS

Relative Accuracy

This term (also known as end point linearity) describes the transfer function of analog output to digital input code. Relative accuracy describes the deviation from a straight line after zero and full scale have been adjusted.

Differential Nonlinearity

Differential nonlinearity is the deviation from an ideal 1LSB change in the output, for adjacent input code changes. A differential nonlinearity specification of 1LSB guarantees monotonicity.

Gain Error

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC7545 is $-(4095 / 4096)\left(\mathrm{V}_{\text {REF }}\right)$. Gain error may be adjusted to zero using external trims as shown in the applications section.

Output Leakage Current

The current which appears at OUT 1 with the DAC loaded with all zeros.

Multiplying Feedthrough Error

The AC output error due to capacitive feedthrough from $\mathrm{V}_{\text {Ref }}$ to OUT 1 with the DAC loaded with all zeros. This test is performed using a 10 kHz sine wave.

Output Current Settling Time

The time required for the output to settle within $\pm 0.5 \mathrm{LSB}$ of final value from a change in code of all zeros to all ones, or all ones to all zeros.

Propagation Delay

The delay of the internal circuitry is measured as the time from a digital code change to the point at which the output reaches 90% of final value.

Digital-to-Analog Glitch Impulse

The area of the glitch energy measured in nanovolt-seconds. Key contributions to glitch energy are internal circuitry timing differences and charge injected from digital logic. The measurement is performed with $\mathrm{V}_{\text {REF }}=\mathrm{GND}$ and an OPA600 as the output op amp and G_{1} (phase compensation) $=0 \mathrm{pF}$.

Monotonicity

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC7545 is guaranteed monotonic to 12 bits, except the J grade is specified to be 10 -bit monotonic.

Power Supply Rejection

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

CIRCUIT DESCRIPTION

Figure 1 shows a simplified schematic of the digital-toanalog converter portion of the DAC7545. The current from the $\mathrm{V}_{\text {REF }}$ pin is switched from OUT 1 to AGND by the FET switch. This circuit architecture keeps the resistance at the reference pin constant and equal to $\mathrm{R}_{\mathrm{LDR}}$, so the reference could be provided by either a voltage or current, AC or DC , positive or negative polarity, and have a voltage range up to $\pm 20 \mathrm{~V}$ even with $V_{D D}=5 \mathrm{~V}$. The $R_{\text {LDR }}$ is equal to " R " and is typically $11 \mathrm{k} \Omega$.

FIGURE 1. Simplified DAC Circuit of the DAC7545.
The output capacitance of the DAC7545 is code dependent and varies from a minimum value $(70 \mathrm{pF})$ at code 000 H to a maximum (200 pF) at code FFFH.
The input buffers are CMOS inverters, designed so that when the DAC7545 is operated from a 5 V supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$, the logic threshold is TTL-compatible. Being simple CMOS inverters, there is a range of operation where the inverters operate in the linear region and thus draw more supply
current than normal. Minimizing this transition time through the linear region and insuring that the digital inputs are operated as close to the rails as possible will minimize the supply drain current.

APPLICATIONS

UNIPOLAR OPERATION

Figure 2 shows the DAC7545 connected for unipolar operation. The high-grade DAC7545 is specified for a 1LSB gain error, so gain adjust is typically not needed. However, the resistors shown are for adjusting full-scale errors. The value of R_{1} should be minimized to reduce the effects of mismatching temperature coefficients between the internal and external resistors. A range of adjustment of 1.5 times the desired range will be adequate. For example, for a DAC7545JP, the gain error is specified to be $\pm 25 \mathrm{LSB}$. A range of adjustment of $\pm 37 \mathrm{LSB}$ will be adequate. The equation below results in a value of 458Ω for the potentiometer (use 500Ω).

$$
\mathrm{R}_{1}=\frac{\mathrm{R}_{\text {LADDER }}}{4096}(3 \times \text { Gain Error })
$$

The addition of R_{1} will cause a negative gain error. To compensate for this error, R_{2} must be added. The value of R_{2} should be one-third the value of R_{1}.

The capacitor across the feedback resistor is used to compensate for the phase shift due to stray capacitances of the circuit board, the DAC output capacitance, and op amp input capacitance. Eliminating this capacitor will result in excessive ringing and an increase in glitch energy. This capacitor should be as small as possible to minimize settling time.

The circuit of Figure 2 may be used with input voltages up to $\pm 20 \mathrm{~V}$ as long as the output amplifier is biased to handle the excursions. Table I represents the analog output for four codes into the DAC for Figure 2.

FIGURE 2. Unipolar Binary Operation.

BINARY CODE	ANALOG OUTPUT
MSB LSB	
111111111111	
100000000000	$-\mathrm{V}_{\text {IN }}(4095 / 4096)$
000000000001	$-\mathrm{V}_{\text {IN }}(2048 / 4096)=-1 / 2 \mathrm{~V}_{\mathbb{I N}}$
000000000000	$-\mathrm{V}_{\text {IN }}(1 / 4096)$

TABLE I. Unipolar Codes.

FIGURE 3. Bipolar Operation (Two's Complement Code).

BIPOLAR OPERATION

Figure 3 and Table II illustrate the recommended circuit and code relationship for bipolar operation. The D/A function itself uses offset binary code. The inverter, U_{1}, on the MSB line converts two's complement input code to offset binary code. If the inversion is done in software, U_{1} may be omitted.
R_{3}, R_{4}, and R_{5} must match within 0.01% and should be the same type of resistors (preferably wire-wound or metal foil), so that their temperature coefficients match. Mismatch of R_{3} value to R_{4} causes both offset and full-scale error. Mismatch of R_{5} to R_{4} and R_{3} causes full-scale error.

DATA INPUT	ANALOG OUTPUT
MSB LSB	
011111111111	$+\mathrm{V}_{\text {IN }}(2047 / 2048)$
000000000001	$+\mathrm{V}_{\text {IN }}(1 / 2048)$
000000000000	$-\mathrm{V}_{\text {IN }}(1 / 2048)$
111111111111	$-\mathrm{V}_{\text {IN }}(2048 / 2048)$
100000000000	

TABLE II. Two's Complement Code Table for Circuit of Figure 3.

DIGITALLY CONTROLLED GAIN BLOCK

Figure 4 shows a circuit for digitally controlled gain block. The feedback for the op amp is made up of the FET switch and the R-2R ladder. The input resistor to the gain block is the $R_{\text {FB }}$ of the DAC7545. Since the FET switch is in the feedback loop, a "zero code" into the DAC will result in the op amp having no feedback, and a saturated op amp output.

APPLICATIONS HINTS

CMOS DACs, such as the DAC7545, exhibit a code-dependent out resistance. The effect of this is a code-dependent differential nonlinearity at the amplifier output which depends on the offset voltage, V_{oS}, of the amplifier. Thus linearity depends upon the potential of OUT 1 and AGND being exactly equal to each other. Usually the DAC is

FIGURE 4. Digitally Controlled Gain Block.
connected to an external op amp with its noninverting input connected to AGND. The op amp selected should have a low input bias current and low $\mathrm{V}_{\text {OS }}$ and $\mathrm{V}_{\text {oS }}$ drift over temperature. The op amp offset voltage should be less than $\left(25 \times 10^{-6}\right)\left(\mathrm{V}_{\text {REF }}\right)$ over operating conditions. Suitable op amps are the Burr-Brown OPA37 and the OPA627 for fixed reference applications and low bandwidth requirement. The OPA37 has low $\mathrm{V}_{\text {os }}$ and will not require an offset trim. For wide bandwidth, high slew rate, or fast settling applications, the Burr-Brown OPA604 or 1/2 OPA2604 are recommended.

Unused digital inputs should be connected to V_{DD} or to DGND. This prevents noise form triggering the high impedance digital input. It is suggested that the unused digital inputs also be given a path to ground or V_{DD} through a $1 \mathrm{M} \Omega$ resistor to prevent the accumulation of static charge if the PC card is unplugged from the system. In addition, in systems where the AGND to DGND connection is on a backplane, it is recommended that two diodes be connected in inverse parallel between AGND and DGND.

INTERFACING TO MICROPROCESSORS

The DAC7545 can be directly interfaced to either an 8- or 16-bit microprocessor through its 12 -bit wide data latch using the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ controls.
An 8-bit processor interface is shown in Figure 5. It uses two memory addresses, one for the lower 8 bits and one for the upper 4 bits of data into the DAC via the latch.

FIGURE 5. 8-Bit Processor Interface.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

