For most current data sheet and other product information, visit www.burr-brown.com

Programmable Gain DIFFERENCE AMPLIFIER

FEATURES

- DIFFERENTIAL GAIN = 1V/V TO 1000V/V: Set with External Resistors
- LOW QUIESCENT CURRENT: $570 \mu \mathrm{~A}$
- WIDE SUPPLY RANGE: Single Supply: 4.5 V to 36 V
Dual Supplies: $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- HIGH COMMON-MODE VOLTAGE:
+8 V at $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$
$\pm 28 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- LOW GAIN ERROR: 0.01\%
- HIGH CMR: 86dB
- S0-8 PACKAGE

APPLICATIONS

- CURRENT SHUNT MEASUREMENTS
- SENSOR AMPLIFIER
- DIFFERENTIAL LINE RECEIVER
- BATTERY POWERED SYSTEMS

DESCRIPTION

The INA145 is a precision, unity-gain difference amplifier consisting of a precision op amp and onchip precision resistor network. Two external resistors set the gain from $1 \mathrm{~V} / \mathrm{V}$ to $1000 \mathrm{~V} / \mathrm{V}$. The input com-mon-mode voltage range extends beyond the positive and negative rails.

On-chip precision resistors are laser-trimmed to achieve accurate gain and high common-mode rejection. Excellent TCR tracking of these resistors assures continued high precision over temperature.
The INA145 is available in the SO-8 surface-mount package specified for the extended industrial temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to ground and ref pin connected to ground unless otherwise noted.

PARAMETER	CONDITION	INA145UA			UNITS
		MIN	TYP	MAX	
OFFSET VOLTAGE, V_{o}	$\begin{gathered} \mathrm{RTI}^{(1,2)} \\ \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 1.35 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{gathered}$ RTI ${ }^{(1,2)}$	See Typical Curve			mV $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$ mV
INPUT VOLTAGE RANGE	$\begin{gathered} \left(\mathrm{V}_{\mathrm{IN}^{+}}\right)-\left(\mathrm{V}_{\mathrm{IN}^{-}}\right)=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CM}}=2(\mathrm{~V}-) \text { to } 2(\mathrm{~V}+)-2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2(\mathrm{~V}-) \\ 76 \\ 70 \end{gathered}$	$\begin{aligned} & 86 \\ & 80 \end{aligned}$	$2(\mathrm{~V}+$) -2	V dB dB
INPUT BIAS CURRENT(2)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} \pm 50 \\ \pm 5 \end{gathered}$		$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
INPUT IMPEDANCE Differential (non-inverting input) Differential (inverting input) Common-Mode			$\begin{aligned} & 80 \\ & 27 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
NOISE Voltage Noise, $f=0.1 \mathrm{~Hz}$ to 10 Hz Voltage Noise Density, $\mathrm{f}=1 \mathrm{kHz}$	$R \mathrm{TI}^{(1,3)}$		$\begin{gathered} 2 \\ 90 \end{gathered}$		$\begin{aligned} & \mu \mathrm{Vp}-\mathrm{p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
GAIN Gain Equation Initial ${ }^{11)}$ Gain Error vs Temperature vs Temperature Nonlinearity	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+0.15 \text { to }(\mathrm{V}+)-1, \mathrm{G}=1 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+0.25 \text { to }(\mathrm{V}+)-1, \mathrm{G}=1 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+0.3 \text { to }(\mathrm{V}+)-1.25, \mathrm{G}=1 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+0.5 \text { to }(\mathrm{V}+)-1.25, \mathrm{G}=1 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+0.3 \text { to }(\mathrm{V}+)-1.25, \mathrm{G}=1 \end{aligned}$		$\begin{gathered} \mathrm{G}=1 \text { to } 1000 \\ =1+\mathrm{R}_{\mathrm{G} 2} / \mathrm{R}_{\mathrm{G} 1} \\ 1 \\ \pm 0.01 \\ \pm 2 \\ \pm 0.01 \\ \pm 2 \\ \pm 0.0002 \end{gathered}$	$\begin{gathered} \pm 0.1 \\ \pm 10 \\ \pm 0.1 \\ \pm 10 \\ \pm 0.005 \end{gathered}$	```V/V V/V % ppm/ }\mp@subsup{}{}{\circ}\textrm{C % ppm/ }\mp@subsup{}{}{\circ}\textrm{C % of FS```
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate Settling Time, 0.1\% 0.01% Overload Recovery	$\begin{gathered} G=1 \\ G=10 \end{gathered}$ $G=1,10 \mathrm{~V}$ Step $G=1,10 \mathrm{~V}$ Step 50\% Input Overload		$\begin{gathered} 500 \\ 50 \\ 0.45 \\ 40 \\ 90 \\ 40 \end{gathered}$		kHz kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
OUTPUT, V_{O} Voltage Output Over Temperature Over Temperature Short-Circuit Current Capacitive Load	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega, G=1 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{G}=1 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, G=1 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, G=1 \end{aligned}$ Continuous to Common Stable Operation	$\begin{aligned} & (\mathrm{V}-)+0.15 \\ & (\mathrm{~V}-)+0.25 \\ & (\mathrm{~V}-)+0.3 \\ & (\mathrm{~V}-)+0.5 \end{aligned}$	$\begin{gathered} \pm 15 \\ 1000 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-1 \\ (\mathrm{~V}+)-1 \\ (\mathrm{~V}+)-1.25 \\ (\mathrm{~V}+)-1.25 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{pF} \end{gathered}$
POWER SUPPLY Specified Voltage Range, Dual Supplies Operating Voltage Range Quiescent Current Over Temperature	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{I}_{\mathrm{O}}=0$	$\begin{aligned} & \pm 2.25 \\ & \pm 1.35 \end{aligned}$	± 570	$\begin{gathered} \pm 18 \\ \pm 18 \\ \pm 700 \\ \pm 800 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \end{gathered}$
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance θ_{JA}		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	150	$\begin{gathered} +85 \\ +125 \\ +125 \end{gathered}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES: (1) Referred to input pins ($\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathbb{I N}^{-}}$), Gain $=1 \mathrm{~V} / \mathrm{V}$. Specified with $10 \mathrm{k} \Omega$ in feedback of A 2 . (2) Input offset voltage specification includes effects of amplifier's input bias and offset currents. (3) Includes effects of input bias current noise and thermal noise contribution of resistor network.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ Single Supply

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{G}=1$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to ground and ref pin connected to 2.5 V unless otherwise noted.

NOTES: (1) Referred to input pins ($\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathbb{I N}^{-}}$), Gain $=1 \mathrm{~V} / \mathrm{V}$. Specified with $10 \mathrm{k} \Omega$ in feedback of $A 2$. (2) Input offset voltage specification includes effects of amplifier's input bias and offset currents. (3) Common-mode voltage range with single supply is $2\left(\mathrm{~V}_{+}\right)-2 \mathrm{~V}-\mathrm{V}_{\mathrm{REF}}$ to $-\mathrm{V}_{\mathrm{REF}}$. (4) Includes effects of input current noise and thermal noise contribution of resistor network.

AMPLIFIER A1, A2 PERFORMANCE

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to ground and ref pin connected to ground unless otherwise noted.

PARAMETER		CONDITION	INA145UA			UNITS	
		MIN	TYP	MAX			
OFFSET VOLTAGE, V_{o} Input Offset Voltage vs Temperature	$\begin{array}{r} \mathrm{V}_{\mathrm{OS}} \\ \Delta \mathbf{V}_{\mathrm{OS}} / \Delta \mathbf{T} \end{array}$		$\begin{gathered} \mathrm{RTI}^{(1,2)} \\ \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$		$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio	V_{CM} CMRR	$\begin{gathered} \mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CM}}=(\mathrm{V}-) \text { to }\left(\mathrm{V}^{+}\right)-1 \end{gathered}$		$\begin{gathered} (\mathrm{V}-) \text { to }(\mathrm{V}+)-1 \\ 90 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$	
OPEN-LOOP GAIN Open Loop Gain	A_{OL}			110		dB	
INPUT BIAS CURRENT ${ }^{(2)}$ Bias Current Offset Current	$\begin{array}{r} I_{B} \\ \mathrm{I}_{\mathrm{os}} \\ \hline \end{array}$			$\begin{gathered} \pm 50 \\ \pm 5 \end{gathered}$		$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
RESISTOR AT A1 OUTPUT, V_{01} Initial Error Temperature Drift Coefficient				$\begin{gathered} 10 \\ \pm 0.2 \\ \pm 50 \end{gathered}$		$\begin{gathered} \mathrm{k} \Omega \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$	

PIN CONFIGURATION

Top View

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply Voltage, V	
Signal Input Terminals, Voltage \qquad $\pm 80 \mathrm{~V}$ Current \qquad $\pm 1 \mathrm{~mA}$	
Output Short Circuit (to ground) .. Continuous	
Operating Temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature ... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature .. $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering	

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ${ }^{(1)}$	TRANSPORT MEDIA
INA145UA	$\underset{\text { " }}{\text { SO-8 }}$	$\begin{gathered} 182 \\ " \end{gathered}$	$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	INA145UA	INA145UA INA145UA/2K5	Rails Tape and Reel

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "INA145UA/2K5" will get a single 2500-piece Tape and Reel.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to ground and Ref pin connected to ground, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to ground and Ref pin connected to ground, unless otherwise noted

GAIN AND PHASE vs FREQUENCY

MAXIMUM OUTPUT VOLTAGE SWING

OFFSET VOLTAGE PRODUCTION DISTRIBUTION

TYPICAL PERFORMANCE CURVES (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to ground and Ref pin connected to ground, unless otherwise noted.

LARGE-SIGNAL STEP RESPONSE
($\mathrm{G}=10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$)

50 $\mu \mathrm{s} / \mathrm{div}$

APPLICATION INFORMATION

The INA145 is a programmable gain difference amplifier consisting of a gain of 1 difference amplifier and a program-mable-gain output buffer stage. Basic circuit connections are shown in Figure 1. Power supply bypass capacitors should be connected close to pins 4 and 7 , as shown. The amplifier is programmable in the range of $\mathrm{G}=1$ to $\mathrm{G}=1000$ with two external resistors.
The output of A 1 is connected to the noninverting input of A2 through a $10 \mathrm{k} \Omega$ resistor which is trimmed to $\pm 1 \%$ absolute accuracy. The A2 input is available for applications such as a filter or a precision current source. See application figures for examples.

OPERATING VOLTAGE

The INA145 is fully specified for supply voltages from $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$, with key parameters guaranteed over the temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The INA145 can be operated with single or dual supplies, with excellent performance. Parameters that vary significantly with operating voltage, load conditions, or temperature are shown in the typical performance curves.

SETTING THE GAIN

The gain of the INA145 is set by using two external resistors, $\mathrm{R}_{\mathrm{G} 1}$ and $\mathrm{R}_{\mathrm{G} 2}$, according to the equation:

$$
\mathrm{G}=1+\mathrm{R}_{\mathrm{G} 2} / \mathrm{R}_{\mathrm{G} 1}
$$

For a total gain of $1, \mathrm{~A} 2$ is connected as a buffer amplifier with no $\mathrm{R}_{\mathrm{G} 1}$. A feedback resistor, $\mathrm{R}_{\mathrm{G} 2}=10 \mathrm{k} \Omega$, should be used in the buffer connection. This provides bias current cancellation (in combination with internal R_{5}) to assure specified offset voltage performance. Commonly used values are shown in the table of Figure 1. Resistor values for other gains should be chosen to provide a $10 \mathrm{k} \Omega$ parallel resistance.

COMMON-MODE RANGE

The input resistors of the INA145 provides an input com-mon-mode range that extends well beyond the power supply rails. Exact range depends on the power supply voltage and the voltage applied to the Ref terminal (pin 1). To assure proper operation, the voltage at the non-inverting input of A1 (an internal node) must be within its linear operating range. Its voltage is determined by the simple $1: 1$ voltage divider between pin 3 and pin 1. This voltage must be between $\mathrm{V}-$ and $(\mathrm{V}+)-1 \mathrm{~V}$.

FIGURE 1. Basic Circuit Connections.

OFFSET TRIM

The INA145 is laser-trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the offset voltage. A voltage applied to the Ref terminal will be summed with the output signal. This can be used to null offset voltage. To maintain good common-mode rejection, the source impedance of a signal applied to the Ref terminal should be less than 10Ω and a resistor added to the positive input terminal should be 10 times that, or 100Ω. Alternatively, the trim voltage can be buffered with an op amp such as the OPA277.

INPUT IMPEDANCE

The input impedance of the INA145 is determined by the input resistor network and is approximately $40 \mathrm{k} \Omega$. The source impedance at the two input terminals must be nearly equal to maintain good common-mode rejection. A 5Ω mismatch in impedance between the two inputs will cause the typical common-mode rejection to be degraded to approximately 72 dB . Figure 7 shows a common application measuring power supply current through a shunt resistor. The source impedance of the shunt resistor, R_{S}, is balanced by an equal compensation resistor, R_{C}.
Source impedances greater than 300Ω are not recommended, even if they are perfectly matched. Internal resistors are laser trimmed for accurate ratios, not to absolute values. Adding equal resistors greater than 300Ω can cause a mismatch in the total resistor ratios, degrading CMR.

FIGURE 2. Optional Offset Trim Circuit.

FIGURE 3. Measuring Current with Shunt Resistor.

FIGURE 4. Noise Filtering.

FIGURE 5. Creating Gains Less Than Unity.

FIGURE 6. Clamp Circuits.

FIGURE 7. Current Monitor, $\mathrm{G}=1$.

FIGURE 8. Comparator Output with Optional Hysteresis Application to Sense Lamp Burn-Out.

FIGURE 9. AC Coupling (DC Restoration).

FIGURE 10. Precision Current Source.

