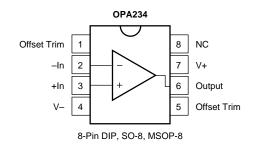


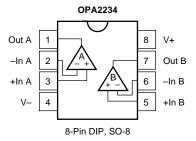
OPA234 OPA2234 OPA4234

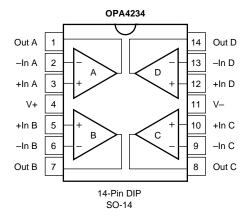
For most current data sheet and other product information, visit www.burr-brown.com

Low Power, Precision SINGLE-SUPPLY OPERATIONAL AMPLIFIERS

FEATURES


- WIDE SUPPLY RANGE: Single Supply: V_S = +2.7V to +36V Dual Supply: V_S = ±1.35V to ±18V
- GUARANTEED PERFORMANCE: +2.7V, +5V, and ±15V
- LOW QUIESCENT CURRENT: 250µA/amp
 LOW INPUT BIAS CURRENT: 25nA max
 LOW OFFSET VOLTAGE: 100µV max
- HIGH CMRR, PSRR, and A_{OI}
- SINGLE, DUAL, and QUAD VERSIONS


DESCRIPTION


The OPA234 series low cost op amps are ideal for single supply, low voltage, low power applications. The series provides lower quiescent current than older "1013"-type products and comes in current industry-standard packages and pinouts. The combination of low offset voltage, high common-mode rejection, high power supply rejection, and a wide supply range provides excellent accuracy and versatility. Single, dual, and quad versions have identical specifications for maximum design flexibility. These general purpose op amps are ideal for portable and battery powered applications.

OPA234 series op amps operate from either single or dual supplies. In single supply operation, the input common-mode range extends below ground and the output can swing to within 50mV of ground. Excellent phase margin makes the OPA234 series ideal for demanding applications, including high load capacitance. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.

Single version packages are DIP-8, SO-8 surface-mount, and a space-saving MSOP-8 surface-mount. Dual packages are DIP-8 and SO-8 surface-mount. Quad packages are DIP-14 and SO-14 surface-mount. All are specified for -40°C to +85°C operation.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111

Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $V_S = +5V$

At T_A = 25°C, V_S = +5V, R_L = 10k Ω connected to $V_S/2$ and V_{OUT} = $V_S/2$, unless otherwise noted.

		OPA234P, U, E OPA2234P, U			OPA234PA, UA, EA OPA2234PA, UA OPA4234PA, UA, U			
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage OPA234E, EA vs Temperature ⁽¹⁾ vs Power Supply vs Time Channel Separation (Dual, Quad)	Operating Temperature Range		±40 ±100 ±0.5 3 0.2 0.3	±100 ±150 ±3 10		* * * * * *	±250 ±350 * 20	μV μV/°C μV/V μV/mo μV/V
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current I _O			-15 ±1	-30 ±5		*	-50 *	nA nA
NOISE Input Voltage Noise Density v Current Noise Density i	f = 1kHz		25 80			*		nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection CMRF	V _{CM} = -0.1V to 4V	-0.1 91	106	(V+) -1	* 86	*	*	V dB
INPUT IMPEDANCE Differential Common-Mode	V _{CM} = 2.5V		10 ⁷ 5 10 ¹⁰ 6			*		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Ao	$V_O = 0.25V \text{ to } 4V$ $R_L = 10k\Omega$ $R_L = 2k\Omega$	108 86	120 96		100 86	*		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product GBV Slew Rate Sf Settling Time: 0.1% 0.01% Overload Recovery Time			0.35 0.2 15 25 16			* * * *		MHz V/μs μs μs μs
OUTPUT Voltage Output: Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (Stable Operation)(3)	$R_{L} = 10k\Omega \text{ to V}_{S}/2$ $R_{L} = 10k\Omega \text{ to V}_{S}/2$ $R_{L} = 10k\Omega \text{ to Ground}$ $R_{L} = 10k\Omega \text{ to Ground}$ $G = +1$	(V+) -1 0.25 (V+) -1 0.1	(V+) -0.65 0.05 (V+) -0.65 0.05 ±11 1000		* * *	* * * * * *		V V V mA pF
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	I _O = 0	+2.7	+5 250	+36 300	*	*	*	V V μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance θ_J 8-Pin DIP SO-8 Surface-Mount MSOP-8 Surface-Mount 14-Pin DIP SO-14 Surface-Mount	· ·	-40 -40 -55	100 150 220 80 110	+85 +125 +125	* *	* * * *	* *	\$\circ\$ \circ\$ \

^{*} Specifications same as OPA234P,U,E.

NOTES: (1) Guaranteed by wafer-level test to 95% confidence level. (2) Positive conventional current flows into the input terminals. (3) See "Small-Signal Overshoot vs Load Capacitance" typical curve.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes are provided herein in the provided herein in thno responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $V_S = +2.7V$

At T_A = 25°C, V_S = +2.7V, R_L = 10k Ω connected to $V_S/2$ and V_{OUT} = $V_S/2$, unless otherwise noted.

	OPA234P, U, E OPA2234P, U				OPA2 OPA			
PARAMETER	CONDITION	MIN TYP MAX		MAX			MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Vos OPA234E, EA vs Temperature ⁽¹⁾ dV _{OS} /dT vs Power Supply PSRR vs Time Channel Separation (Dual, Quad)	$V_{\text{CM}} = 1.35 \text{V}$ Operating Temperature Range $V_{\text{S}} = +2.7 \text{V to } +30 \text{V}, \ V_{\text{CM}} = 1.7 \text{V}$		±40 ±100 ±0.5 3 0.2 0.3	±100 ±150 ±3 10		* * * * * *	±250 ±350 * 20	μV μV/°C μV/V μV/mo μV/V
	V _{CM} = 1.35V V _{CM} = 1.35V		-15 ±1	-30 ±5		*	-50 *	nA n
NOISE Input Voltage Noise Density v _n Current Noise Density i _n	f = 1kHz		25 80			*		nV/√ Hz fA/√ Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection CMRR	$V_{CM} = -0.1V$ to 1.7V	-0.1 91	106	(V+) -1	* 86	*	*	V dB
INPUT IMPEDANCE Differential Common-Mode	V _{CM} = 1.35V		10 ⁷ 5 10 ¹⁰ 6			*		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain A _{OL}	$V_O = 0.25V$ to 1.7V $R_L = 10k\Omega$ $R_L = 2k\Omega$	108 86	125 96		100 86	*		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SR Settling Time: 0.1% 0.01% Overload Recovery Time	$C_{L} = 100pF$ $G = 1, 1V \text{ Step, } C_{L} = 100pF$ $G = 1, 1V \text{ Step, } C_{L} = 100pF$ $(V_{IN}) \text{ (Gain)} = V_{S}$		0.35 0.2 6 16 8			* * * * *		MHz V/μs μs μs
OUTPUT Voltage Output: Positive	$R_L = 10k\Omega$ to $V_S/2$ $R_L = 10k\Omega$ to $V_S/2$ $R_L = 10k\Omega$ to Ground $R_L = 10k\Omega$ to Ground $R_L = 10k\Omega$ to Ground	(V+) -1 0.25 (V+) -1 0.1	(V+) -0.6 0.05 (V+) -0.65 0.05 ±8 1000		* * * *	* * * * * *		V V V V mA pF
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	I _O = 0	+2.7	+2.7	+36 300	*	*	*	V V μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance θ_{JA} 8-Pin DIP SO-8 Surface-Mount MSOP-8 Surface-Mount 14-Pin DIP SO-14 Surface-Mount		-40 -40 -55	100 150 220 80 110	+85 +125 +125	* * *	* * * *	* * *	\$\circ

^{*} Specifications same as OPA234P,U,E.

NOTES: (1) Guaranteed by wafer-level test to 95% confidence level. (2) Positive conventional current flows into the input terminals. (3) See "Small-Signal Overshoot vs Load Capacitance" typical curve.

SPECIFICATIONS: $V_S = \pm 15V$

At T_A = 25°C, V_S = ±15V, R_L = 10k Ω connected to ground, unless otherwise noted.

		OPA234P, U, E OPA2234P, U			OPA234PA, UA, EA OPA2234PA, UA OPA4234PA, UA, U				
PARAMETER	CONDITION	MIN			MIN TYP		MAX		
OFFSET VOLTAGE Input Offset Voltage V, OPA4234U Model vs Temperature ⁽¹⁾ dV _{OS} /v vs Power Supply vs Time Channel Separation (Dual, Quad)	T Operating Temperature Range		±70 ±0.5 3 0.2 0.3	±250 ±5 10		* ±70 * * *	±500 ±250 * 20	μV μV μV/°C μV/V μV/mo μV/V	
Input Offset Current I, NOISE	$V_{CM} = 0V$ $V_{CM} = 0V$ $V_{CM} = 0V$ $f = 1kHz$		-12 ±1	-25 ±5		* *	-50 *	nA nA nV/√Hz	
Current Noise Density INPUT VOLTAGE RANGE Common-Mode Voltage Range	/n in	(V-)	80	(V+) -1	*	*	*	fA/√Hz	
Common-Mode Rejection CMR INPUT IMPEDANCE Differential Common-Mode	R $V_{CM} = -15V$ to $14V$ $V_{CM} = 0V$	91	106 10 ⁷ 5 10 ¹⁰ 6		86	* *		$\Omega \parallel pF$ $\Omega \parallel pF$	
OPEN-LOOP GAIN Open-Loop Voltage Gain A	$V_{O} = -14.5V \text{ to } 14V$	110	120		100	*		dB	
FREQUENCY RESPONSE Gain-Bandwidth Product GB Slew Rate S Settling Time: 0.1% 0.01% Overload Recovery Time	$C_{L} = 100 pF$		0.35 0.2 41 47 22			* * * *		MHz V/μs μs μs μs	
OUTPUT Voltage Output: Positive Negative Short-Circuit Current Capacitive Load Drive (Stable Operation)(3)	G = +1	(V+) -1 (V-) +0.5	(V+) -0.7 (V-) +0.15 ±22 1000		*	* * * *		V V mA pF	
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	$I_{Q} = 0$	±1.35	±15 ±275	±18 ±350	*	*	*	V V μA	
8-Pin DIP	JA	-40 -40 -55	100	+85 +125 +125	* * *	*	* *	°C/W	
SO-8 Surface-Mount MSOP-8 Surface-Mount 14-Pin DIP SO-14 Surface-Mount			150 220 80 110			* * * *		°C/W °C/W °C/W	

^{*} Specifications same as OPA234P,U,E.

NOTES: (1) Guaranteed by wafer-level test to 95% confidence level. (2) Positive conventional current flows into the input terminals. (3) See "Small-Signal Overshoot vs Load Capacitance" typical curve.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

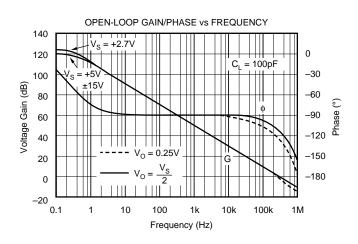
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

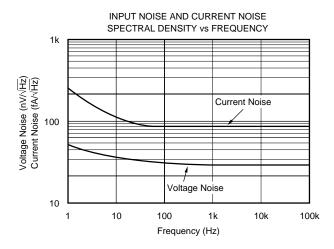
Supply Voltage, V+ to V	36V
Input Voltage	
Output Short-Circuit ⁽¹⁾	Continuous
Operating Temperature	
Storage Temperature	55°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C

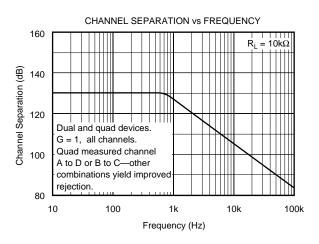
NOTE: (1) Short-circuit to ground, one amplifier per package.

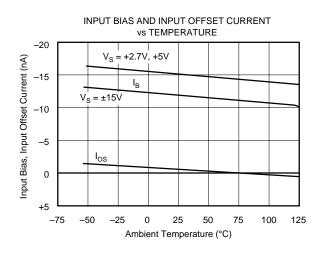
PACKAGE/ORDERING INFORMATION

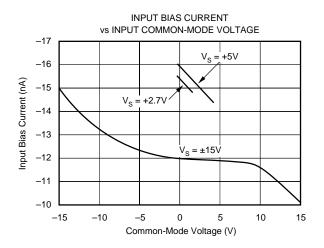

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA
Single OPA234EA OPA234E OPA234PA OPA234P OPA234UA OPA234U	MSOP-8 Surface-Mount MSOP-8 Surface-Mount Plastic DIP-8 SO-8 Surface-Mount	337 " 337 " 006 " 182	-40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	A34 ⁽²⁾ A34 ⁽²⁾ OPA234PA OPA234P OPA234UA OPA234U	OPA234EA/250 OPA234EA/2K5 OPA234E/250 OPA234E/2K5 OPA234PA OPA234P OPA234UA OPA234UA	Tape and Reel Tape and Reel Tape and Reel Tape and Reel Rails Rails Rails Rails
Dual OPA2234PA OPA2234P OPA2234UA OPA2234U	Plastic DIP-8 " SO-8 Surface-Mount	006 " 182	-40°C to +85°C -40°C to +85°C	OPA2234PA OPA2234P OPA2234UA OPA2234U	OPA2234PA OPA2234P OPA2234UA OPA2234U	Rails Rails Rails Rails
Quad OPA4234PA OPA4234P OPA4234UA OPA4234U	Plastic DIP-8 "SO-8 Surface-Mount	006 " 182	-40°C to +85°C -40°C to +85°C	OPA4234PA OPA4234P OPA4234UA OPA4234U	OPA4234PA OPA4234P OPA4234UA OPA4234U	Rails Rails Rails Rails

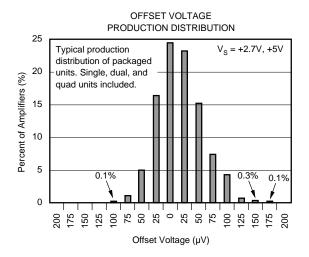

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "OPA234E//2K5" will get a single 2500-piece Tape and Reel. (2) The grade will be marked on the Reel.

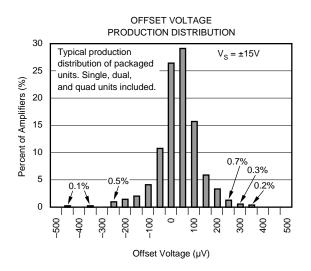


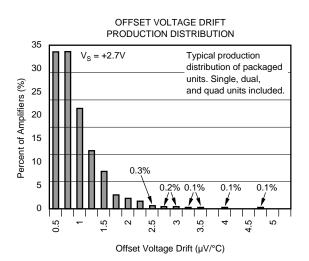

TYPICAL PERFORMANCE CURVES

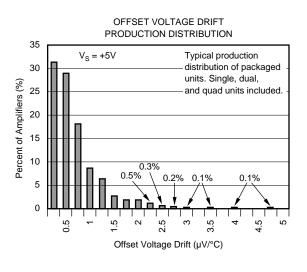

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$ unless otherwise noted.

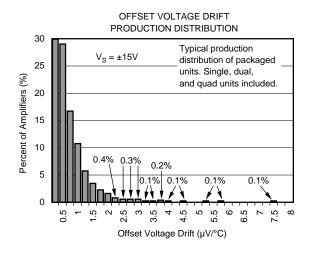


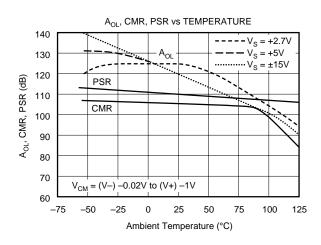


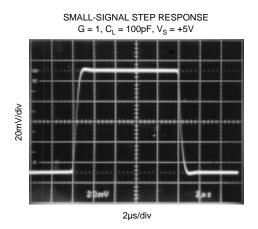


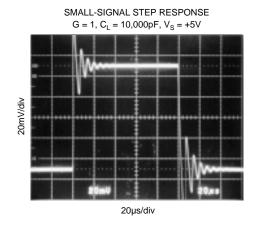


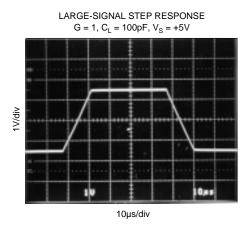

TYPICAL PERFORMANCE CURVES (Cont.)

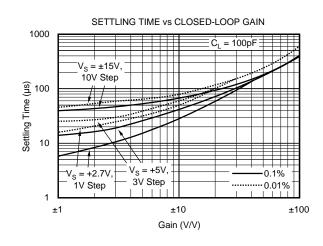

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$ unless otherwise noted.

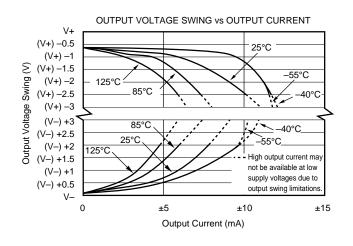


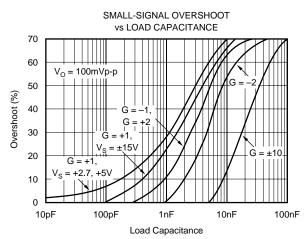


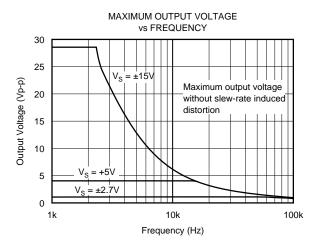


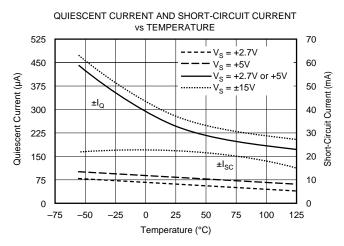



TYPICAL PERFORMANCE CURVES (Cont.)


At T_A = +25°C and R_L = 10k Ω unless otherwise noted.







TYPICAL PERFORMANCE CURVES (Cont.)

At T_A = +25°C and R_L = 10k Ω unless otherwise noted.

APPLICATIONS INFORMATION

OPA234 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors.

OPERATING VOLTAGE

OPA234 series op amps operate from single (+2.7V to +36V) or dual (±1.35V to ±18V) supplies with excellent performance. Specifications are production tested with +2.7V, +5V, and ±15V supplies. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in typical performance curves.

OFFSET VOLTAGE TRIM

Offset voltage of OPA234 series amplifiers is laser trimmed and usually requires no user adjustment. The OPA234 (single op amp version) provides offset voltage trim connections on pins 1 and 5. Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op amp, not to adjust system offset or offset produced by the signal source. Nulling offset could degrade the offset drift behavior of the op amp. While it is not possible to predict the exact change in drift, the effect is usually small.

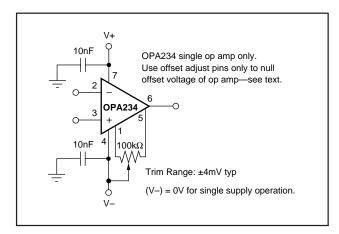


FIGURE 1. OPA234 Offset Voltage Trim Circuit.

