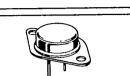
Boca Semiconductor Corp. (BSC)

HIGH VOLTAGE NPN SILICON TRANSISTORS

. . . designed for use in high-voltage inverters, converters, switching

High Collector-Emitter Voltage - VCEX = 700 Vdc

regulators and line operated amplifiers.

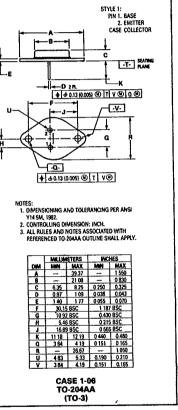

 Excellent DC Current Gain – hFE = 10 (Min) @ IC = 2.5 Adc
Low Collector-Emitter Saturation Voltage – VCE(sat) = 0.8 Vdc (Max).@ IC = 1.0 Adc

NPN 2N3902

3.5 AMPERE

POWER TRANSISTORS

400 VOLTS


Rat	Symbol	2N3902		Unit	
Collector-Emitter V	VCEO	400		Vdc	
Collector-Emitter V	VCEX	700		Vdc	
Emitter-Base Voltag	VEB	5.0		Vdc	
Collector Current -	lc	3.5		Adc	
Base Current	ŧв	2.0		Adc	
Total Device Dissipa Derate above 75	PD	100 1.33		Watts W/ ⁰ C	
Operating Junction	TJ	-65 to +150		°C	
Storage Temperatur	Tstg	-65 to +200		°C	
Thermal Resistance	, Junction to Case		θlC	0.75	
*Indicates JEDEC			91C	0.75	
*Indicates JEDEC		OWERDERAT	·		°c/w
	Registered Data	OWER DERAT	·	0.75	
*Indicates JEDEC	Registered Data	DWER DERAT	·	0.75	
*Indicates JEDEC	Registered Data		·		
*Indicates JEDEC	Registered Data	OWER DERAT	·		
*Indicates JEDEC	Registered Data	OWER DERAT	·		
*Indicates JEDEC	Registered Data	OWER DERAT	·		
*Indicates JEDEC	Registered Data	OWER DERAT	·		
*Indicates JEDEC	Registered Data	OWER DERAT	·		

120

100

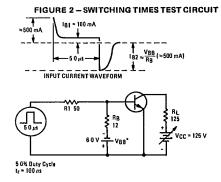
TC, CASE TEMPERATURE (°C)

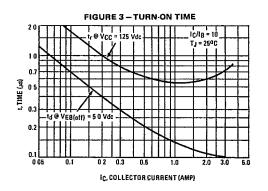
80

3-60

http://www.bocasemi.com

7


*ELECTRICAL CHARACTERISTICS (T_C = 25^oC unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (Ic = 100 mAdc, Ig = 0) (See Figure 12)	VCEO(sus)	325	-	Vdc
Collector Cutoff Current (VCE = 400 Vdc, IB = 0)	ICEO	_	0.25	mAdc
Collector Cutoff Current {VCE = 700 Vdc, VEB{off} = 1.5 Vdc} {VCE = 400 Vdc, VEB{off} = 1.5 Vdc, TC = 125 ^o C}	ICEX		2.5 0,5	mAdc
Emitter Cutoff Current {V _{BE} = 5.0 Vdc, I C = 0}	¹ EBO	_	5.0	mAdo
ON CHARACTERISTICS (1)				_
DC Current Gain {I _C = 1,0 Adc, V _{CE} = 5.0 Vdc} {I _C = 2.5 Adc, V _{CE} = 5.0 Vdc}	hfe	30 10	90	-
Collector-Emitter Saturation Voltage $(I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Adc})$ $(I_C = 2.5 \text{ Adc}, I_B \cdot 0.5 \text{ Adc})$	VCE(sat)	-	0.8 2,5	Vdc
Bese-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B - 0.1 Adc) (I _C 2.5 Adc, I _B 0.5 Adc)	V _{BE(sat})		1.5 2.0	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain-Bandwidth Product ($I_{\rm C}$ = 0.2 Adc, V _{CE} = 10 Vdc)	fT	2.8	_	MHz

*Indicates JEDEC Registered Data

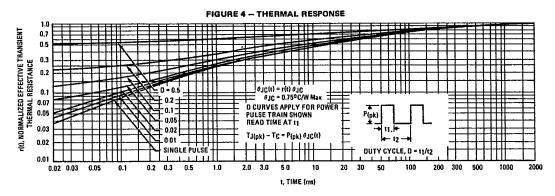
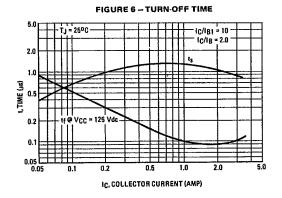
(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

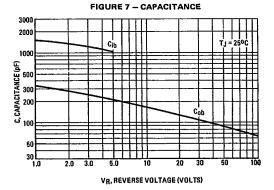
3-61

http://www.bocasemi.com

2N3902

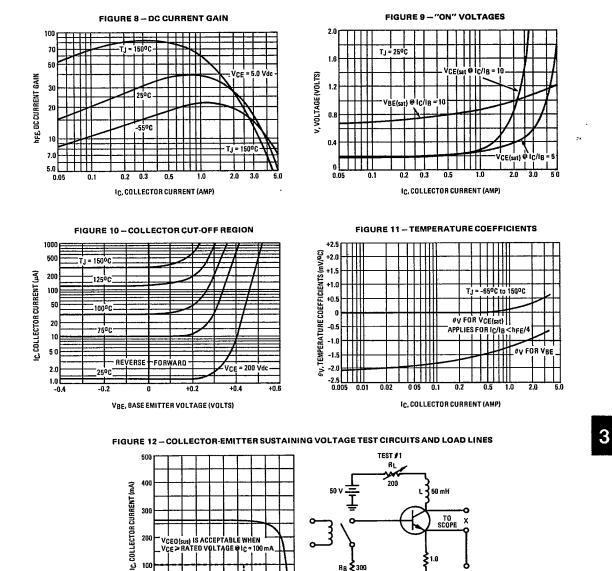
T-33-13


FIGURE 5 - ACTIVE-REGION SAFE-OPERATING AREA

There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe operating area curves indicate $i_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_{J[pk]} = 150^{9}$ C; TC is variable depending on conditions. Pulse curves are valid for duty cycles of 10% provided $T_{J[pk]} \leq 150^{9}$ C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.



http://www.bocasemi.com

Ł

3-63

500

RB **≷** 300

6.0 V

VBB

ı lı lı

200

100

0

0

VCEO (sus) IS ACCEPTABLE WHEN VCE>RATED VOLTAGE OIC=100mA

200

100

1

400

300

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

http://www.bocasemi.com

х

Y

C

1.0