N-Channel JFET

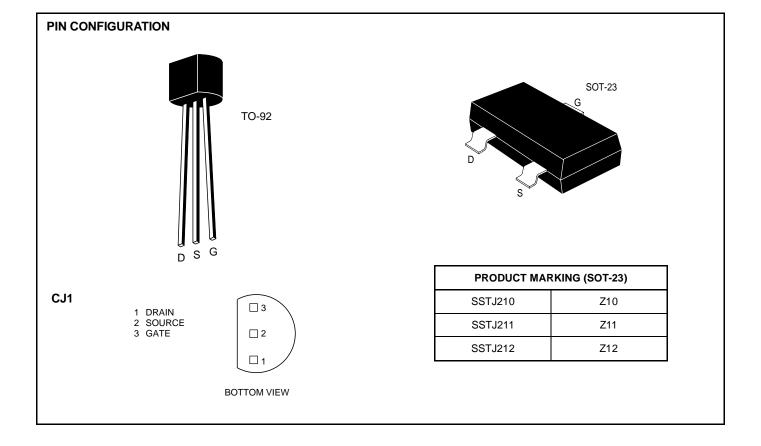
calogic CORPORATION S

J210 – J212 / SSTJ210 – SSTJ212

FEATURES

- Low Noise
- Low Leakage
- High Power Gain

APPLICATIONS


- General Purpose Amplifiers
- VHF/UHF Amplifiers
- Mixers
- Oscillators

DESCRIPTION

The J210 Series is an N-Channel JFET single device encapsulated in a TO-92 plastic package well suited for automated assembly. The device features low leakage, typically under 2 pA, low noise, under 10 nano volts per square hertz at 10 hertz and high gain. This series is excellent for mixer, oscillators and amplifier applications.

ORDERING INFORMATION

Part	Package	Temperature Range			
J210-11	Plastic TO-92 Package	-55°C to +135°C			
SSTJ210-11	Plastic SOT-23	-55°C to +135°C			

oqíc ca CORPORATION

J210 - J212 / SSTJ210 - SSTJ212

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Parameter/Test Condition	Symbol	Limit	Unit
Gate-Drain Voltage	V _{GD}	-25	V
Gate-Source Voltage	VGS	-25	V
Gate Current	lG	10	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	mW/ ^o C
Operating Junction Temperature	TJ	-55 to 135	°C
Storage Temperature	T _{sta}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 seconds)	TL	300	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

SYMBOL		TYP ¹	210		211		212			TEAT CONDITIONS	
STNIDUL	CHARACTERISTCS		MIN	MAX	MIN	МАХ	MIN	MAX	UNIT	TEST CONDITIONS	
STATIC	STATIC										
V _{(BR)GSS}	Gate-Source Breakdown Voltage	-35	-25		-25		-25		V	$I_G = -1\mu A$, $V_{DS} = 0V$	
$V_{GS(OFF})$	Gate-Source Cut off Voltage		-1	-3	-2.5	-4.5	-4	-6	v	$V_{DS} = 15V$, $I_D = 1nA$	
I _{DSS}	Saturation Drain Current ²		2	15	7	20	15	40	mA	$V_{DS} = 15V, V_{GS} = 0V$	
IGSS Gate Reverse C	Cate Reverse Current	-1		-100		-100		-100	pА	V_{GS} = -15V, V_{DS} = 0V	
	Gale Reverse Guirent	-0.5							nA	$T_A = 125^{\circ}C$	
lG	Gate Operating Current	-1							pА	$V_{DG} = 10V, I_D = 1mA$	
I _{D(OFF)}	Drain Cutoff Current	1							pА	$V_{DS} = 10V, V_{GS} = -8V$	
V _{GS(F)}	Gate-Source Forward Voltage	0.7							V	$I_G = 1 \text{mA}, V_{DS} = 0 \text{V}$	
DYNAMIC											
g fs	Common-Source Forward Transconductance		4	12	6	12	7	12	mS	V _{DS} = 15V, V _{GS} = 0V	
gos	Common-Source Output Conductance			150		200		200	μS	f = 1kHz	
Ciss	Common-Source Input Capacitance	4							pF V _{DS} = 15V, V _{GS} = 0V f = 1MHz		
Crss	Common-Source Reverse Transfer Capacitance	1.5									
e _n	Equivalent Input Noise Voltage								nV/√Hz	V _{DS} = 15V, V _{GS} = 0V f = 1kHz	

NOTES: 1. For design aid only, not subject to production testing. 2. Pulse test; PW = 300μ s, duty cycle $\leq 3\%$.