Fast Buffer

LH0033 / LH0033C

FEATURES

• Slew rate	1500V/ μs
 Wide range single or dual supply operation 	
Bandwidth	100MHz
● High output drive ±10V with	
Low phase non-linearity	
Rise times High input resistance:	\dots 10 $^{10}\Omega$
High output current (peak)	

APPLICATIONS

- Coaxial Cable Driver
- Fast Op Amp Booster
- Flash Converter Driver
- Video Line Driver
- High Speed Sample and Hold
- ATE Pin Driver
- Video Amplifier
- Radar
- Sonar
- Boost OP Amp Output
- Isolate Capacitance Load

GENERAL DESCRIPTION

The LH0033 is a high speed, FET input, voltage follower/buffer designed to provide high current drive (up to 100mA) at frequencies from DC to over 100MHz. The LH0033 slews at 1500V/µs and exhibits excellent phase linearity up to 20MHz.

LH0033 is intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffers for driving reactive loads and high impedance input buffers for high speed A to Ds and comparators. In addition, the LH0033 can continuously drive 50Ω coaxial cables or be used as a yoke driver for high resolution CRT displays.

This device is constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033 is specified for operation from -55°C to +125°C and the LH0033C is specified from -25°C to 85°C. The LH0033 is available in a 2.2W metal TO-8 package.

ORDERING INFORMATION

Part	Package	Temperature Range			
LH0033G	H12A (TO8 12 Lead)	-55°C to 125°C			
LH0033CG	H12A (TO8 12 Lead)	-25°C to 85°C			

CONNECTION DIAGRAM LH0033 Metal Can Package NC NC NC (12)INPUT -**OUTPUT** OFFSET (8) PRESET OFFSET **ADJUST** NC **Top View** Case is electrically Isolated Package H12A

ABSOLUTE MAXIMUM RATINGS

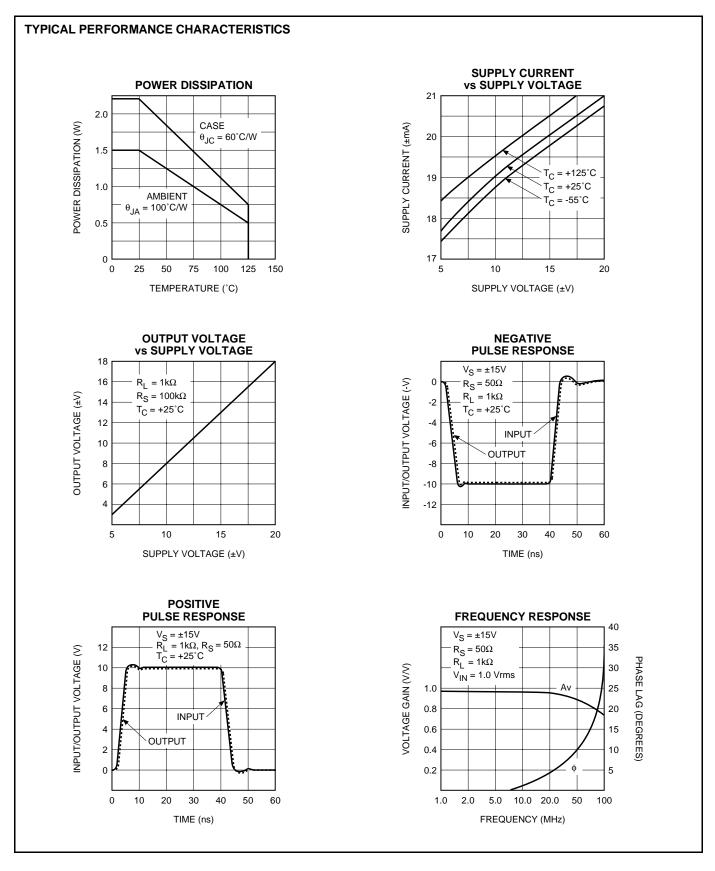
If Military/Aerospace specified devices are required, please contact Calogic Sales Office for availability and specifications.
Supply Voltage ($V^+ - V^-$)
LH0033/LH0033C
Junction Temperature
Input Voltage

Continuous Output Current	
LH0033/LH0033C	:100mA
Peak Output Current	
LH0033/LH0033C	
Lead Temp. (Soldering, 10 seconds)	300°C
Operating Temperature Range	
LH0033	
LH0033C25°C to	+85°C
Storage Temperature Range65°C to -	+150°C

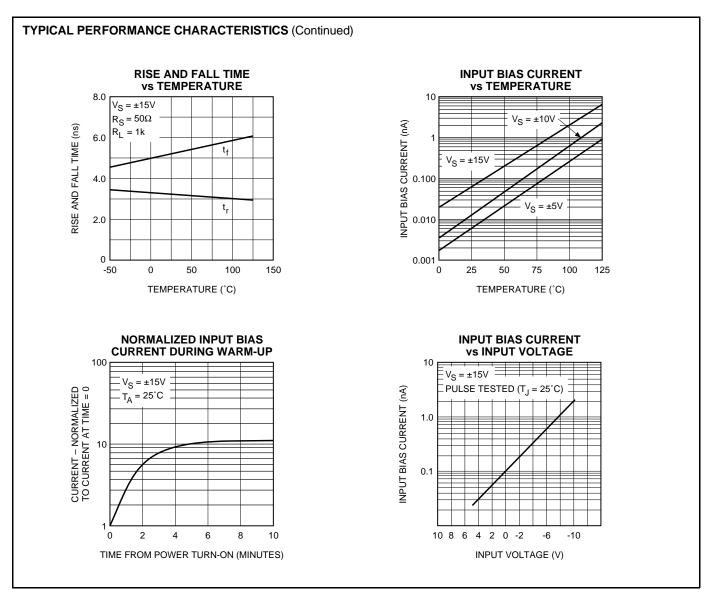
DC ELECTRICAL CHARACTERISTICS: The following specifications apply for supply voltage = ± 15 V unless otherwise noted (Note 1)

SYMBOL CHARACTERISTICS	LH0033			LH0033C			UNITS	CONDITIONS	
	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS	
Vos	Output Offset Voltage		5.0	10 15		12	20 25	mV mV	$R_S = 100\Omega$, $T_J = 25^{\circ}C$, $V_{IN} = 0V$ (Note 2), $R_S = 100\Omega$
$\frac{\Delta V_{OS}}{\Delta T}$	Average Temperature Coefficient of Offset Voltage		50	100		50	100	μV/°C	$R_S = 100\Omega$, $V_{IN} = 0V$ (Note 3)
IB	Input Bias Current			250 2.5 10			500 5.0 20	pA nA nA	$V_{IN} = 0V$ $T_J = 25^{\circ}C$ (Note 2) $T_A = 25^{\circ}C$ (Note 4) $T_J = T_A = T_{MAX}$
Av	Voltage Gain	0.97	0.98	1.00	0.96	0.98	1.00	V/V	$V_O = \pm 10V$, $R_S = 100\Omega$, $R_L = 1.0k\Omega$
R _{IN}	Input Impedance	10 ¹⁰	10 ¹¹		10 ¹⁰	10 ¹¹		Ω	$R_L = 1k\Omega$
Rout	Output Impedance		6.0	10		6.0	10	Ω	$V_{IN} = \pm 1.0V, R_L = 1.0k$
V _(SWING 1)	Output Voltage Swing	±12			±12			V	$V_I = \pm 14V, R_L = 1.0k$
V _(SWING 2)	Output voltage Swing	±9.0			±9.0			l v	$V_I = \pm 10.5 V$, $R_L = 100 \Omega$, $T_A = 25^{\circ} C$
Is	Supply Current		18	22		18	24	mA	V _{IN} = 0V (Note 5)
PD	Power Consumption		540	660		540	720	mW	V _{IN} = 0V

AC ELECTRICAL CHARACTERISTICS: $T_J = 25^{\circ}C$, $V_S = \pm 15V$, $R_S = 50\Omega$, $R_L = 1.0K\Omega$ (Note 3)


SYMBOL	CHARACTERISTICS	LH0033			LH0033C			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS
SR	Slew Rate	1000	1500		1000	1400		V/μs	V _{IN} = ±10V
BW	Bandwidth		100			100		MHz	V _{IN} = 1.0Vrms
	Phase Non- Linearity		2.0			2.0		degrees	BW = 1.0Hz to 20MHz
R _T	Rise Time		2.9			3.2		ns	$\Delta V_{IN} = 0.5V$
	Propagation Delay		1.2			1.5		ns	$\Delta V_{IN} = 0.5V$
	Harmonic Distortion		<0.1			<0.1		%	f>1kHz

Note 1: LH0033 is 100% production tested as specified at 25°C. Specifications at temperature extremes are verified by sample testing, correlation or periodic characterization.

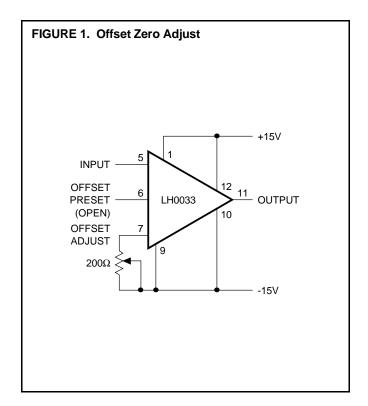

Note 2: Specification is at 25° C junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_J = 25^{\circ}$ C. When supply voltages are ± 15 V, no-load operating junction temperature may rise $40-60^{\circ}$ C above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV, and I_B will change significantly during warm-up.

- Note 3: Limits are guaranteed by sample testing, periodic characterization or correlation.
- Note 4: Measured in still air 7 minutes after application of power. Guaranteed through correlated automatic pulse testing.
- **Note 5:** Guaranteed through correlated automatic pulse testing at $T_J = 25^{\circ}C$.

APPLICATION INFORMATION:

Recommended Layout Precautions

RF/video printed circuit board layout rules should be followed when using the LH0033 since it will provide power gain to frequencies over 100MHz. Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.


Offset Voltage Adjustment

The LH0033's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 200Ω for the LH0033 between the offset adjust pin and V^- , as illustrated in Figure 1.

Operation From Single Or Asymmetrical Power Supplies

LH0033 may be used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $V^+ = +5V$ and $V^- = -12V$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output error may be predicted by:

$$\Delta V_0 \cong (1-A_V) \frac{(V^+-V^-)}{2} = 0.005 (V^+-V^-)$$

where:

 A_V = No load voltage gain, typically 0.99

V⁺ = Positive supply voltage

V = Negative supply voltage

For the above example, ΔV_O would be -35mV. This may be adjusted to zero as described in Figure 1. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the Typical Applications section.

Short Circuit Protection

In order to optimize transient response and output swing, output current limit has been omitted from the LH0033. Short circuit protection may be added by inserting appropriate value resistors between V † and V $_{\rm C}^{-}$ pins and V $^{-}$ and V $_{\rm C}^{-}$ pins as illustrated in Figure 2. Resistor values may be predicted by:

$$R_{LIM} \cong \frac{V^+}{I_{SC}} = \frac{V^-}{I_{SC}}$$

where:

 $I_{SC} \le 100 \text{mA}$ for LH0033

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling VC^+ and VC^- pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in

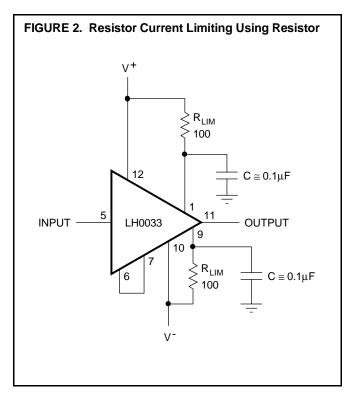


Figure 3. In Figure 3, the current sources are saturated during normal operation, thus apply full supply voltage to the $V_{\rm C}$ pins. Under fault conditions, the voltage decreases as required by the overload.

For Figure 5:

$$R_{LIM} = \frac{V_{BE}}{I_{SC}} = \frac{0.6V}{60mA} = 10\Omega$$

Capacitive Loading

The LH0033 is designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from (C \times dv/dt) should be limited below absolute maximum peak current ratings for the devices.

Thus for the LH0033:

$$(\frac{\Delta V_{IN}}{\Delta t}) \times C_L \le I_{OUT} \le \pm 250 \text{mA}$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below total package power rating:

$$P_Dpkg. \ge P_{DC} + P_{AC}$$

$$P_Dpkg. \ge (V^+ - V^-) \times I_S + P_{AC}$$

$$P_{AC} \cong (Vp-p)^2 \times f \times C_L$$

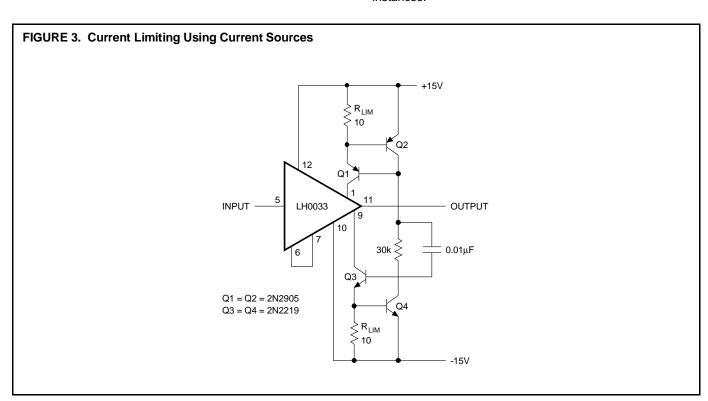
where:

Vp-p = Peak-to-peak output voltage swing

f = Frequency

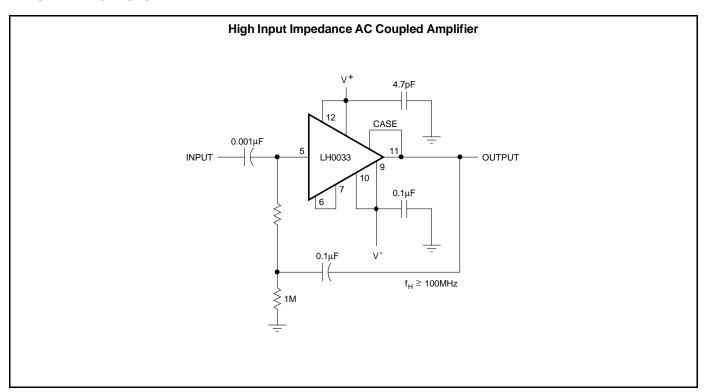
C_L = Load Capacitance

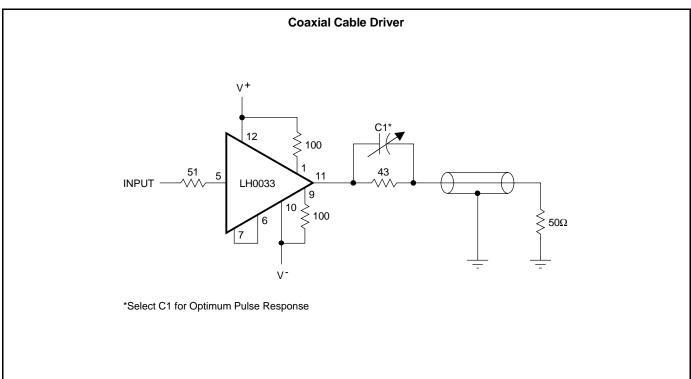
Operation Within An Op Amp Loop

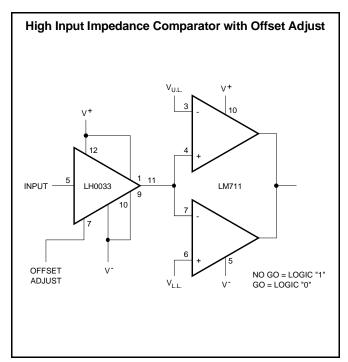

LH0033 may be used as a current booster or isolator buffer within a closed loop with op amps such as LH0032, or CLM4124. An isolation resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidth and high slew rate of the LH0033 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.

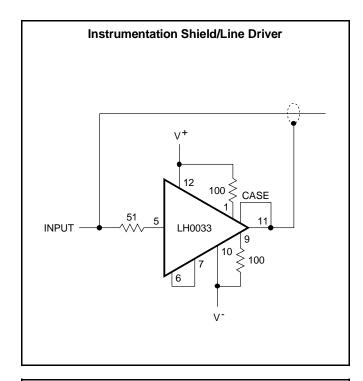
Hardware

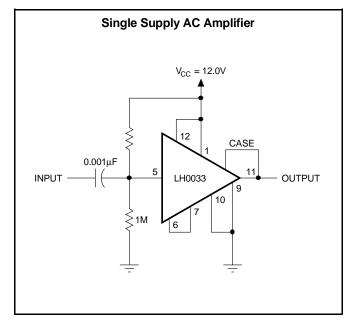
In order to utilize the full drive capabilities of LH0033, it should be mounted with a heat sink particulary for extended temperature operation. The case is isolated from the circuit and may be connected to the system chassis.

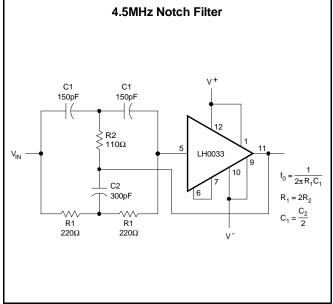

Design Precaution


Power supply bypassing is necessary to prevent oscillation. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within <1/4" to 1/2" of the device package) to a ground plane. Capacitors should be one or two 0.1 μF in parallel; adding a 4.7 μF solid tantalum capacitor will help troublsome instances.

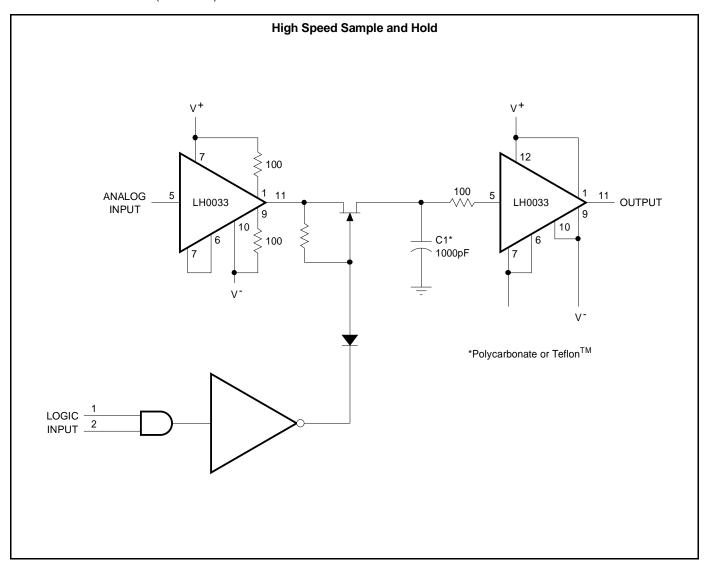

TYPICAL APPLICATIONS







TYPICAL APPLICATIONS (Continued)



TYPICAL APPLICATIONS (Continued)

