High-Speed Analog N-Channel DMOS FETs Improved On -Resistance

SD310 / SD312 / SD314

FEATURES

High input to Output isolation	
Low On Resistance	. 15 Ohms @ 15\
 Low Feedthrough and Feedback Trans 	sients
Low Capacitance:	
— Input (Gate)	2.4pF typ.
— Output	
— Feedback	0.3pF typ
 No Protection Diode from Gate to Subs 	strate for very
high impedance applications	-
Maximum Gate Voltage	±40V

APPLICATIONS

SD310:

Analog Switch Driver

SD312 and SD314:

- Analog Switches
- High-Speed Digital Switches
- Multiplexers
- A to D Converters
- D to A Converters
- Choppers
- Sample & Hold

DESCRIPTION

The Calogic SD310 is a 30V analog switch driver without a built-in protection diode from gate to substrate for use with SD312 and SD314 DMOS analog switches.

The SD312 is a high performance, high-speed, high-voltage, and low resistance analog switch capable of switching ± 5 V signals. The maximum threshold of 2V permits simple direct TTL an CMOS driving for small applications.

The SD314 is DMOS analog switch capable of switching $\pm 10V$ analog signals with all other parameters identical to those of SD312.

All three devices are manufactured with an implanted high-speed, high-voltage, and low resistance double-diffused MOS (DMOS) process. SD310, SD312 and SD314 devices also have no built-in protection diode to enhance performance in high impedance circuits. The devices are available in 4-lead hermetic TO-72 package and in die form for hybrid applications. Custom devices based on SD310, SD312 and SD314 can also be ordered.

ORDERING INFORMATION

Part	Package	Temperature Range
SD310DE	Hermetic TO-72 Package	-55°C to +125°C
SD312DE	Hermetic TO-72 Package	-55°C to +125°C
SD314DE	Hermetic TO-72 Package	-55°C to +125°C
XSD310	Sorted Chips in Carriers	-55°C to +125°C
XSD312	Sorted Chips in Carriers	-55°C to +125°C
XSD314	Sorted Chips in Carriers	-55°C to +125°C

SCHEMATIC DIAGRAM (Top View)

CD10-2

SD310/SD312/SD314

ABSOLUTE MAXIMUM RATINGS

Drain Current	
Total Device Dissipation at 25°C Case Temperature	
Storage Temperature Range65° to +2	00°C
Lead Temperature (1/16" from case for 10 sec.) 3	00°C
Operating Temperature Range55°C to +1	25°C

PARAM	METER	SD310	SD312	SD314	UNIT
V_{DS}	Drain-to-source	+30	+10	+20	V _{dc}
V _{SD}	Source-to-drain*	+10	+10	+20	V _{dc}
V_{DB}	Drain-to-body	+30	+15	+25	V_{dc}
V_{SB}	Source-to-body	+15	+15	+25	V_{dc}
Vgs	Gate-to-source	±40	±40	±40	V_{dc}
V_{GB}	Gate-to-body	±40	±40	±40	V _{dc}
V_{GD}	Gate-to-drain	±40	±40	±40	V _{dc}

DC ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, unless other specified.)

SYMBOL PARAMETER	SD310			SD312			SD314			UNITS	TEST CONDITIONS	
STWIBOL	PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	TEST CONDITIONS
BREAKDOWN VOLTAGE												
BV _{DS}	Drain-to-source	30	35									$V_{GS}=V_{BS}=0V,I_D=10\mu A$
D V D3	Diam to source	10	25		10	25		20	25			$V_{GS} = V_{BS} = -5V$, $I_S = 10$ nA
BV _{SD}	Source-to drain	10			10			20			V	$V_{GD} = V_{BD} = -5V$, $I_D = 10nA$
BV_{DB}	Drain-to-body	15			15			25				$V_{GB} = 0V$, source OPEN, $I_D = 10$ nA
BV _{SB}	Source-to-body	15			15			25				$V_{GB} = 0V$, drain OPEN, $I_S = 10\mu A$
LEAKAGE	CURRENT											
I _{DS} (OFF)	Drain-to-source		1	10		1	10				nA	$V_{GS} = V_{BS} = -5V$, $V_{DS} = +10V$
108 (011)	Diam-to-source								1	10		$V_{GS} = V_{BS} = -5V$, $V_{DS} = +20V$
I _{SD} (OFF)	Source-to-drain		1	10		1	10					$V_{GS} = V_{BD} = -5V$, $V_{SD} = +10V$
150 (011)	Cource-to-drain								1	10		$V_{GS} = V_{BD} = -5V$, $V_{SD} = +20V$
I _{GBS}	Gate			0.1			0.1			0.1		$V_{DB}=V_{SB}=0V,\ V_{GS}=\pm40V$
VT	Threshold voltage	0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	2.0	V	$V_{DS}=V_{GS}=V_T,I_S=1\mu A,V_{SB}=0V$
5		30	50		30	50		30	50		$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +5 \text{V}$	
r _{DS} (ON)	os (ON) Drain-to-source resistance		20	35		20	35		20	35	Ω	$I_D = 1.0 \text{mA}, \ V_{SB} = 0, \ V_{GS} = +10 \text{V}$
			15	25		15			15			$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +15 \text{V}$

AC ELECTRICAL CHARACTERISTICS

SYMBOL PA	PARAMETER	SD310			SD312			SD314			UNITS	TEST CONDITIONS
STWIBOL	PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	TEST CONDITIONS
gfs	Forward transconductance	15	20		15	20		15	20		mmhos	$V_{DS} = 10V$, $V_{SB} = 0V$, $I_D = 20mA$, $f = 1kHz$
SMALL SIGNAL CAPACITANCES (See capacitance model)												
C _(GS+GD+GB)	Gate node		2.4	3.7		2.4	3.7		2.4	3.7		
C _(GD+DB)	Drain node		1.3	1.7		1.3	1.7		1.3	1.7	pF	$V_{DS} = 10V$, $f = 1MHz$ $V_{GS} = V_{BS} = -15V$
C _(GS+SB)	Source node		3.5	4.5		3.5	4.5		3.5	4.5		
C _{DG}	Reverse transfer		0.3	0.7		0.3	0.7		0.3	0.7		

