Integrated AVI/ATAPI DVD Drive Manager Datasheet

Features

- Integrates all required components for a complete AVI or ATAPI interface DVD drive (front-end) electronics solution:
 - RF amp
 - Data channel
 - Servo control processor
 - DVD ECC (error correction code)
 - CSS (content scramble system)
 - ATAPI decoder
- Reads DVD+RW, DVD-ROM, DVD-RW, CDDA, CD-ROM, CD-R, CD-RW, VCD, and DVCD discs
- Direct Audio/Video interface for DVD player applications
- ATAPI interface for game console and DVD loader solutions
- High-performance controller supports DVD disc speeds up to 8x and CD-ROM disc speeds up to 40x
- Partial Response Maximum Likelihood (PRML) data channel
- Servo Control Processor (SCP) on-chip
- DVD navigation support
- 208-pin LQFP/EPAD packages

RF Amp

- · Provides laser power control
- · Gain control in digital domain
- Generates focus error and tracking signal
- Provides RF signal for the data channel
- Bypass for external RF amp applications

Overview

The CL-CR3710 is Cirrus Logic's high-integration, highperformance ATAPI DVD drive manager. It integrates all required components for a DVD loader for DVD players, game consoles, and DVD-ROM drives. The CL-CR3710 includes an RF amp, servo control processor, data channel, DVD ECC, CSS authorization, CD-ROM decoder, and ATAPI interface.

The CL-CR3710 can be configured with an audio DAC (digital-to-analog converter), external buffer memory (8- or 16-bit DRAM), a local micro-controller with its RAM and ROM, and power drivers to create a complete DVD-ROM electronics solution.

The CL-CR3710 supports DVD disc speeds up to 8x and Ultra DMA host speeds up to 33.3 Mbytes/sec.

The RF signal is over-sampled by a high-speed ADC (analog-to-digital converter). The timing loop is closed in the digital domain with variable decimation and interpolation used to provide the output samples to the data recovery logic. A channel-quality logic circuit is provided to allow parametric calibration.

The CL-CR3710 data channel supports partial response maximum likelihood (PRML) data acquisition, providing state-of-the-art data recognition in a noisy environment, coming from the pick-up head.

CIRRUS LOGIC

www.cirrus.com

Features (Cont.)

Data Channel

- Digital PLL provides flexible control of center frequency to support improved access times
- Channel quality provided for parametric calibration
- Channel data rates up to 210 Mbits/sec.
- Flexible and error-tolerant channel sync mark windowing

SCP (Servo Control Processor)

- Includes a servo control processor for focus, tracking, sled, and spindle servo loops
- Significantly faster capture for focus and tracking
- · Effective in a wide range of parameter variations
- Superior response to defects, shock, and vibration
- Supports both CLV (constant linear velocity) and CAV (constant angular velocity) modes

ECC

- Real-time DVD ECC error correction
- Real-time CD-ROM layered ECC error correction with programmable number of sets of P-word and Q-word corrections per sector (up to 64 total)
- C1/C2 ECC and de-interleaving
- Real-time subcode error correction in CD-DA (compact disc digital audio) mode

Decoder

- Supports hardware streaming operation
- DVD navigation support
- Supports ADB (audio data buffering)
- Automatic target sector header search
- · Hardware sector header validity check
- Supports high-speed Intel[®]- and Motorola[®]-type microcontrollers
- Supports nonmultiplexed and multiplexed address and data buses

Host Interface

- True real-time hardware/software ATAPI compatibility
- Supports Ultra DMA: capable of synchronous DMA data rates up to 33.3 Mbytes/sec.
- Supports ATA PIO modes 3 and 4 transfers without IOCHRDY

Host Interface (cont.)

- Supports DMA modes 1 and 2
- Hardware implementation of:
 - ATAPI packet command
 - ATAPI reset command

High-Performance

- PIO/DMA ATAPI bus transfer rate:
 - PIO modes 3 and 4, multiword DMA modes 1 and 2, and singleword DMA modes 1 and 2
- Data transfer rate:
 - CD-ROM CLV –maximum 32 $\,\times\,$ data rate with 25% overspeed capture
 - CD-ROM CAV maximum $40 \times$ OD data rate
 - DVD-ROM CLV maximum $6\times$ data rate with 33% overspeed capture
 - DVD-ROM CAV maximum 8× OD data rate
 - DVD+R CLV max. 4x read
- Buffer bandwidth:
 - 55 Mbytes per second with 16-bit DRAM

Buffer Manager

- Dual-port circular buffer control with access-priority resolver
- · Supports streaming operation
- · Direct addressing of up to 4 Mbytes of DRAM
- Supports variable buffer segmentation
- Programmable timing control for SDRAM
- Host overrun control
- Supports 16-bit SDRAM

Microcontroller Interface

- Supports high-speed Intel $^{\ensuremath{\mathbb{R}}}\xspace$ and Motorola $\ensuremath{\mathbb{R}}\xspace$ -type microcontrollers
- Supports nonmultiplexed and multiplexed address and data busses
- Interrupt or polled microcontroller interface
- Microcontroller access to six external switch settings on the buffer bus
 - Three-level power-down capability when idle,
 - automatic power-up when command is received

Overview (Cont.)

The CL-CR3710 servo control processor implements the focus, tracking, sled, and spindle servo loops. An ADC is provided to convert the focus and tracking error signal. The outputs to the power drivers are linear DACs.

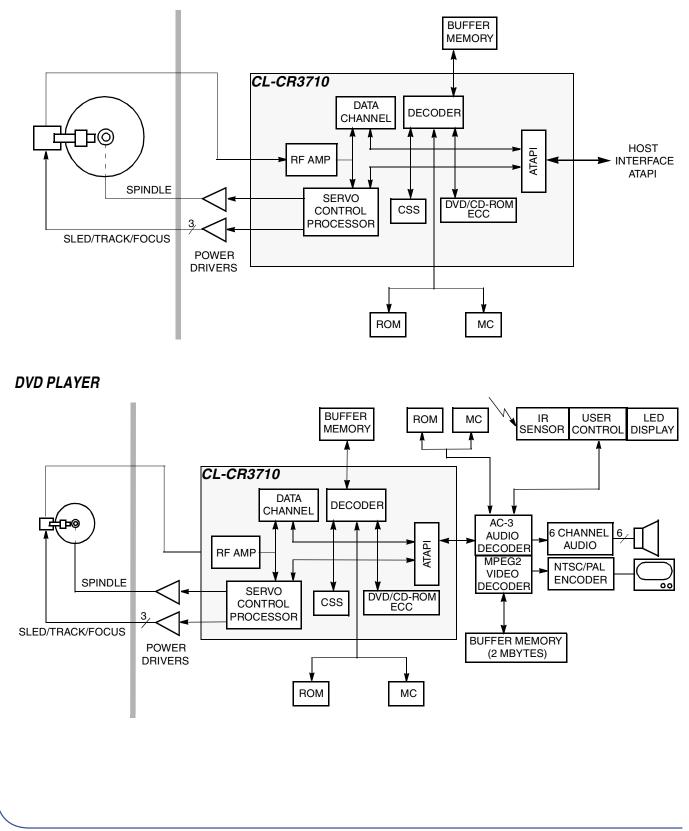
The CL-CR3710 supports real-time DVD ECC, CD-ROM C1/C2, and layered ECC correction, which is programmable for up to 64 P- and Q-word corrections per sector. It also supports subcode R/W correction in CD-DA (compact disc digital audio) mode.

The buffer manager controls the flow of data from the data channel, through the ECC, and to either the host interface or the serial audio channel. Data is stored and retrieved in the external buffer memory using interleaved access cycles. The buffer memory is implemented with SDRAM devices. Up to 4 Mbytes of SDRAM can be directly addressed by the CL-CR3710.

Features (Cont.)

Overview (Cont.)

CONFIDENTIAL


DS587PP1 - *rev* 0.1 April 11, 2002 Copyright © 2002 Cirrus Logic Inc.

System Block Diagrams1	
DVD-ROM1	
DVD PLAYER1	
Functional Decriptions	
Decoder2	
DVD Mode2	2
CD Form	3
Data Channel4	
Servo Channel6	j
Pickup/Sensor Interface6	j
Servo Control Processor6	
Servo DACs6	j
Register Map8	5
Pinout Information13	5
Pinout Diagram13	5
Pin Decriptions14	
Package And Order Information	
Package Information	
LQFP Ordering Information21	

System Block Diagrams

DVD-ROM

Functional Decriptions

This section overviews the main functional blocks of the CL-CR3710 Integrated AVI/ATAPI DVD Drive Manager, and is divided into the following sub-sections:

- "Decoder" on page 2
- "Data Channel" on page 4
- "Servo Channel" on page 6

Decoder

The CL-CR3710 contains a highly automated DVD/CD decoder that takes EFM data from the Analog Front and Digital PRML read channel and transform this data through a series of operations into user data and sends it to the Host controller.

The sequence of operation is as follows:

The high level firmware sets up the decoder through the UP control interface. The decoder is controlled through a register set. The high level FW sets up the mode of operation (CD or DVD), the buffer manager and the host interface. The external SDRAM buffer is controlled through a set of address pointers programmed by the FW. This address pointers controls the data flow from the DISC, to and fro to the ECC Block and the HOST.

DVD Mode

The actual data that is written on the DVD DISC is a transformed version of the user data and follows the DVD Physical Specification.

To understand the decoder flow the transformation process needs to be understood, which is beyond the scope of this document. In summary the user data is organized in sectors (2048 bytes). The transformation process involves adding ID (Sector #) and other information such as copy protection etc. to the data, Scrambling the data, ECC encoding, splitting the data into recording frames, EFM modulation and creation of EFMP frames with unique sync patterns inserted for EFMP frame identification.

The function of the decoder is to take this transformed data and convert back into the user format.

Once the FW sets the start transfer control bit(s) in the decoder, the Decoder starts processing the data from the Read Channel. The data is in the EFMP format (Eight to Fourteen Modulation Plus) as defined in the DVD Physical Specification. The first step is to synchronize and align the data on the EFMP frame boundaries by detecting unique sync patterns that are embedded in the EFMP data stream. Once the data is aligned on the EFMP frame boundary it is de-serialized into 16-bit symbols, and than demodulated into 8 bits of data according to the EFMP modulation standard.

The next step is to determine the right starting point to start the transfer of data into the buffer. The FW will program the Target Header or ID information. Once the incoming data ID matches the programmed ID, data transfer to the Buffer starts. The data transfer

always start on an ECC boundary. The HW monitors the subsequent ID to detect any interruption in the DVD data stream.

After sufficient data is stored (at least 1 ECC Block = 16 sectors) in the Buffer, the Error Correction (ECC) system can start the Error Detection and Correction. The Error Correction algorithm is programmable to allow for multi-pass correction, depending upon the application e.g. in the DVD-ROM case, one would program it with more passes than for DVD-Movie case.

Once ECC system has corrected one ECC block, this data can be transferred to the host. However before transferring this data need to be de-scrambled. The de-scrambling process is done during Host transfer to save Buffer BW.

All the Disc Transfer, ECC correction, Descrambling and Host Transfers are done in parallel without any intervention from the micro-controller. The hardware keeps track of how many sectors are transferred from the disc to the buffer, how many sectors have been corrected and how many transferred to the host. This is a fully automated operation also known as "full streaming".

CD Form

The actual data that is written on the CD DISC is a transformed version of the user data and follows the CD Physical Specification. The Physical format of a CD disc is defined by the CD-Digital Audio Physical Specification. All CD whether CD-ROM or CD-Audio follows this standard. The recordable formats also follow this format, except for the linking area for multi-session recordings.

Again it is beyond the scope of this document to describe the CD formats as unlike the DVD format, there are host of different formats that the decoder needs to process. These are CD-DA, CD-ROM Mode 0, CD-ROM Mode 2/Form1 CD-ROM Mode 2/ Form 2 plus CD-Recordable data. In addition for the CD-DA mode the decoder needs to process the Sub Channel Data. The Sub-Channel contains additional information that is embedded in the EFM data stream, which contains sector identifications and other information unique to the data.

Basically there are two types of data, CD-Audio and CD-ROM (with different modes and form). For CD-Audio both the main channel and the Sub Channel Data needs to be processed, for the CD-ROM case only the main channel data is processed.

The data arriving from the Read Channel is in the EFM format, first it is synchronized and aligned on the EFM frame boundaries. After synchronization the data is demodulated using the EFM demodulation table.

CD data is protected through 2 levels of correction C1 and C2 for the CD-DA and 3 levels C1, C2 and C3 for CD-ROM formats.

C1 and C2 correction is done on the fly, i.e. before the data is transferred to the Buffer. After EFM demodulation, the data is sent to CIRC block (Cross Interleaved Reed Solomon Code) which performs C1 and C2 correction on the incoming data. It also marks data it cannot correct, these markers called C2 Pointers are used by the Audio Interpolator block to perform audio interpolation and in the case of CD-ROM data, help the C3 correction engine in identifying the errors quickly.

After the EFM demodulation, the Target Header Search looks for the target sector ID in the data stream. In the case of CD-DA this ID is in the sub channel data stream,

whereas in the case of CD-ROM data it is embedded in the main channel data. Once the Target Header is found the data transfer to the Buffer starts and the de-scrambling is done while storing the data in the buffer from the disc. This data is than transferred to the Host (ATAPI or Audio DAC interface)

In the case of CD-ROM data, depending on the format additional C3 correction needs to be performed. This flow is similar to the DVD case, i.e. when sufficient sectors are available in the buffer, the ECC engine starts correcting the data and the Host transfer starts as soon as sufficient sectors are available after C3 correction.

Data Channel

The CL-CR3710 contains a partial response maximum likelihood (PRML) read channel. The channel takes the analog signals from the optical pickup's (OPU) photo detector outputs, detects the EFM or EFM+ data, and sends the data to the decoder. Figure 1 illustrates the Data Channel architecture.

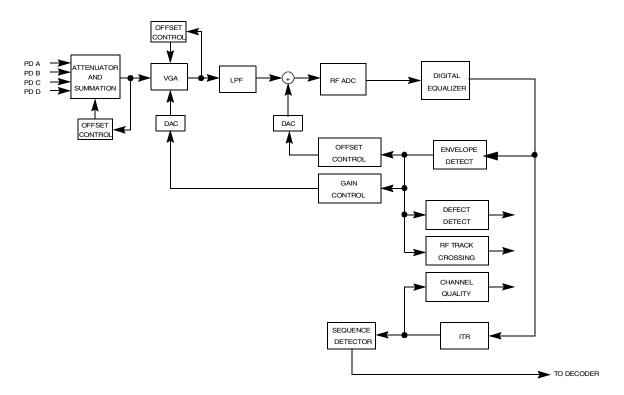


Figure 1. Data Channel Diagram

The CL-CR3710 data channel architecture minimizes analog signal processing and migrates all feasible functionality to real-time digital signal processing blocks. The analog blocks are:

- Summation Amplifier
- Digitally Controlled Variable Gain Amplifier (VGA)
- Analog Low Pass Filter (LPF)
- Analog-to-Digital Converter (RF ADC)

The main data path digital blocks are:

- Digital Equalizer
- Interpolate Timing Recovery (ITR)
- Sequence Detector

The data path blocks are supported by the loop control blocks: the digital automatic gain control (DAGC), offset control, and digital asymmetry control. The digital defect detect block allows the loops and the servo processor to coast through defects. u-Controller accessible channel quality metrics support servo error signal gain and offset calibration.

The Attenuator and Summation block interfaces the OPU's A, B, C, and D photodetector outputs or the RF signal to the data channel. The attenuator and offset loop keeps the signals within the linear range of the circuitry. The channel can use either internally or externally summed RF.

The variable gain amplifier (VGA) is part of the automatic gain control (AGC) loop. This amplifier's gain is exponentially proportional to its gain control. The analog low pass filter is designed to limit noise and serve as an anti-aliasing filter.

The CL-CR3710 contains a high speed analog to digital convertor that allows the majority of the signal processing to be performed in the digital domain. The sampling frequency is fixed and can be Fsynth/2 or Fsynth/4. This allows for a wide range of allowable input data rates.

The digital equalizer is a 5 tap finite impulse response filter. It's coefficients change automatically as the data rate changes. The envelope detector is used to generate error signals for the offset and AGC loops. The defect detection is also performed here. The digital offset loop keeps the read signal's baseline at the ADC's range center. The AGC also keeps the signal's amplitude within the ADC's range. These loops are digital with the exception of the digital to analog convertors (DACs), ADC, an adder, and a VGA.

The CL-CR3710 data channel performs data separation via the ITR. This all digital implementation of a phase locked-loop (PLL) makes for consistent chip to chip performance. It also allows for wide capture ranges. This decreases the speed of seeks in constant linear velocity (CLV) mode. It has been designed handle the rate changes inherent in constant angular velocity (CAV) mode automatically. Asymmetry compensation is performed at the ITR input.

The CL-CR3710 contains a maximum likelihood sequence detector especially designed for low resolution DVD signals. This sequence detector achieves substantial signal processing gain over a slicer detector.

The channel is controlled by a state machine that automatically starts timing recovery and deals with defects. This ensures quick recovery from defects and fast data acquisition after seeks.

The CL-CR3710 contains a versatile digital block that can be used to monitor the ongoing 'health' or 'quality' of the channel, and that enables accurate equalization calibration to compensate for wide variations in disc resolution.

Servo Channel

The CL-CR3710 contains an integrated servo system that can control either a CDROM or a DVD mechanism, with the following features:

- Servo Control Processor (SCP), implementing algorithms designed specifically for optical disc drives
- Supports dual pick up for CD and DVD applications
- Integrated RF amplifier with Laser Diode Automatic Power Control (LD APC)
- Track counter with velocity estimation
- Multi-function register banks
- External microcontroller interface circuitry
- Programmable Sample Rate Subsystem

Figure 2 shows the CL-CR3710 in a complete servo system. Four control loops can be processed by this chip: focus, track, sled, spindle. Since the CL-CR3710 contains a processor, control algorithms and interface circuitry, little external hardware and little microcontroller intervention is required to implement the servo system.

Pickup/Sensor Interface

The Pickup Interface is the input to the servo control processor (SCP). This circuitry provides the analog and digital processing needed before the SCP can process the control signals from the sensors. Since laser diode automatic power control and reference voltage generation are also provided, the CL-CR3710 can be connected directly to the pick up electronics without the need for an external RF amplifier.

Servo Control Processor

The SCP does all the processing necessary to control all four servo loops with little loading of the external microcontroller. The microcontroller sends setup information and commands to the control system through the microcontroller interface. It can also monitor key metrics and change control variables to optimize system performance.

All parameter variables and SCP instructions are stored in internal RAM. Since the CL-CR3710 is a RAM based device, the microcontroller must first initialize these RAMs before servo operations can begin.

Servo DACs

Control outputs for the sled, focus, and track loops are converted to analog through an array of three 11-bit DACs. The spindle loop has a pulse width modulated (PWM) output.

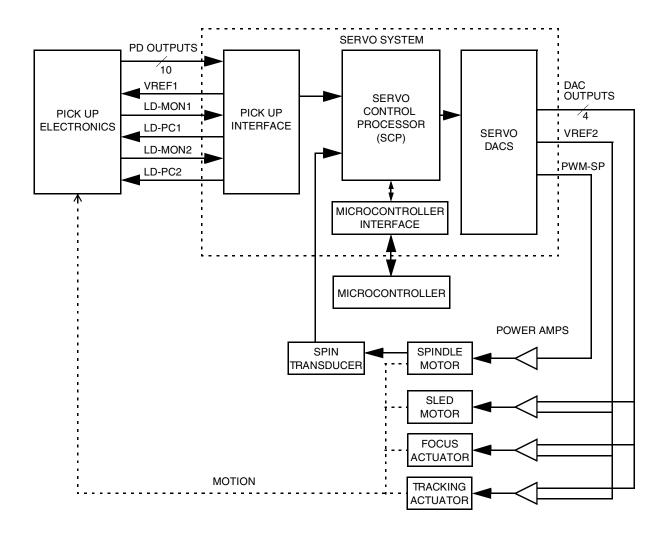


Figure 2. Servo System Diagram

Register Map

Address (Hex)	ress (Hex) Register Name			
00H	ATAPI Error (ATERR)	R/W		
01H	ATAPI Features (ATFEA)	R/W		
02H	ATAPI Interrupt Reason (ATINT)	R/W		
03H	ATA Sector Number (ATSECN)	R/W		
04H	ATAPI Byte Count Low (ATBCL)	R/W		
05H	ATAPI Byte Count High (ATBCH)	R/W		
06H	ATAPI Drive Select (ATDSEL)	R/W		
07H	ATAPI Command (ATCMD)	R		
08H	ATAPI Packet (ATPKT)	R		
09H	Alternate ATAPI Error (ALTERR)	R/W		
0AH	ATA Drive Control/Status (ATDRV)	R/W		
0BH	Host Drive Address (HDA)	R/W		
0CH	AT Control 1 (ATCTRL1)	R/W		
0DH	AT Control 2 (ATCTRL2)	R/W		
0EH	AT Control 3 (ATCTRL3)	R/W		
10H	Host Interrupt Status 1 (HIST1)	R/W		
11H	Host Interrupt Enable 1 (HIEN1)	R/W		
12H	Host Interrupt Status 2 (HIST2)	R/W		
13H	Host Interrupt Enable 2 (HIEN2)	R/W		
15H	PC Mode Control 1 (PCMODE1)	R/W		
16H	Host Transfer/Packet FIFO Control (HXFR)	R/W		
17H	ATAPI Phase Lock Release (ATULOCK)	W		
18H	Synchronous DMA Control (SDMA)	R/W		
19H	PC Mode Control 2 (PCMODE2)	R/W		
1BH	MPEG Interface Configuration 1 (MPEGCFG1)	R/W		
1CH	MPEG Interface Configuration 2 (MPEGCFG2)	R/W		
1DH	MPEG Interface Configuration 3 (MPEGCFG3)	R/W		
1EH	MPEG/BCA Interface Interrupt Status (MPEGIST)	R/W		
1FH	MPEG/BCA Interface Interrupt Enable (MPEGIEN)	R/W		
20H	DAC Interface Configuration (DACCFG)			
21H	Audio DAC Channel Selection (DACCHSEL)	R/W		
22H	Audio Peak Meter (PKMTR) R			
23H	Peak Meter / Audio Control (PKMTRCTL)			
24H	Audio DAC Attenuation Control (DACATTCTL)			
25H	Audio Sub-Q Read (DACQRD)	R		

Address (Hex)	Register Name	R/W		
26H	Audio Sub-Q Control (DACQCTL)	R/W		
27H	Internal Audio Attenuation Level (IATT)	R		
2FH	DAC Interface Status/Control (DACS)	R/W		
30H-31H	Audio Address Pointer (AAP)	R/W		
34H-35H	Host Address Pointer (HAP)	R/W		
38H-39H	Host Buffer Start Address (HBSA)	R/W		
3CH-3DH	Local Address Base Pointer (LABP)	R/W		
40H-41H	Host Buffer End Address (HBEA)	R/W		
44H-45H	Host Transfer Count (HTC)	R/W		
46H	Scheduled Buffer Data Access (SBDA)	R/W		
47H	Buffer Transfer Control (BTC)	R/W		
48H-49H	Adjust Difference Block Count (ADBC)	R/W		
4AH	Host Transfer Sector Type (HTST)	R/W		
4BH	Host Transfer Format 1 (HTF1)	R/W		
4CH	Host Transfer Format 2 (HTF2)	R/W		
4DH	Buffer Timing Control (BTIM)	R/W		
4EH	Buffer Mode Control (BMC)	R/W		
4FH	DRAM Refresh Period (RFSH)	R/W		
50H-51H	Disc Address Pointer (DAP)	R/W		
54H-55H	Disc Buffer Start Address (DBSA)	R/W		
58H-5BH	Disc Transfer Count (DTC)	R/W		
5CH-5DH	Disc Buffer End Address (DBEA)	R/W		
60H-61H	Corrector Address Pointer (CAP)	R/W		
64H-65H	Sector to be Corrected (STC)	R/W		
66H-67H	Current Host Transfer Count (CHTC)	R		
68H-6BH	Corrector Transfer Count (CTC)	R/W		
70H-71H	Buffer Sector Size (BSS)	R/W		
72H-73H	Difference Block Count (DBC)	R/W		
74H-77H	Local Address Offset Pointer (LAOP)	R/W		
78H-79H	Navigation Pack Address Pointer (NAP)	R		
7AH-7BH	Navigation Pack Detected (NAVPKDET)	R		
7CH	Navigation Play Control (NAVCTL)	R/W		
7FH	Threshold Transfer Count (TTC)	R/W		
80H	Decoder Operation Mode (DOPMD)	R/W		
81H	Disc Configuration (DCFG) R/V			
82H	Disc Transfer Control/Status (DCTRL) R/W			
83H	ECC Control/Status 1 (ECC1)	R/W		
84H	DVD ECC Error Information (ECC2)	R/W		
85H	Data Channel Interface Configuration 2 (DCCFG2)	R/W		

Table 1: CL-CR3710 Registers

Address (Hex)	Register Name	R/W		
86H	Target Header (TRGHD)	R/W		
87H	Target Header Search Time-Out (HSTO)	R/W		
88H	RAW Header/Subheader Read-Out (RHDRD)	R		
89H	RAW Header Mismatch Threshold (RHDMTH)	R/W		
8BH	Expected Header Read-Out (EXPHD)	R		
8CH	RAW Header/SubHeader Flag (HDFLG)	R		
8DH	Header Read-Out Control (RDCTRL)	R/W		
8EH	Data Channel Interface Configuration 3 (DCCFG3)	R/W		
90H	Disc Interrupt Status 1 (DIST1)	R/W		
91H	Disc Interrupt Enable 1 (DIEN1)	R/W		
92H	Disc Interrupt Status 2 (DIST2)	R/W		
93H	Disc Interrupt Enable 2 (DIEN2)	R/W		
94H	Disc Transfer Control 1 (DCTRL1)	R/W		
95H	Sector Per Track Count (SPTC)	R/W		
98H	BCA Control 1	R/W		
99H	BCA Status 1	R/W		
9AH	BCA Control 2	R/W		
9BH	BCA Control 3	R/W		
9CH	BCA Control 4	R/W		
9DH	BCA Channel Clock	R/W		
9EH-9FH	Spindle Speed	R		
A0H	Defect Address FIFO1/FIFO2(DMF)	R/W		
A1H	C1/C2 Control (C12CNTL)	R/W		
A2H	EFM Sync Control (EFMSYCTL)	R/W		
A3H	EFM Plus Sync Control (EFMPSYCTL)	R/W		
A4H	Subcode Read-Out (SBRD)	R		
A5H	Subcode Control/Status (SBCTL)	R/W		
A6H	EFM Plus Sync Status (EFMPSYNSTS)	R		
A7H	Corrected ID Read-Out (CIDR)	R/W		
B5H	SRAM Diagnostics Status 1 (SRAMST1)	R		
B6H	SRAM Diagnostics Status 2 (SRAMST2)	R		
B7H	SRAM Diagnostics Status 3 (SRAMST3)	R		
B8H	SRAM Diagnostics Control 1 (SRAMDIACTL1)	R/W		
B9H	SRAM Diagnostics Control 2 (SRAMDIACTL2)			
BAH	SRAM uC Access Data (SRAMUPDATA)	R/W		
BBH	SRAM uC Access Address (SRAMUPADDR)	R/W		
BDH	Test1 (TEST)	R/W		
BEH	Product and Revision Number (PRVN)	R		
BFH	Miscellaneous Control (MISC)	R/W		

Table	1:	CL-CR3710	Registers
IUNIC	•••		riegiotoro

Address (Hex)	Register Name	R/W		
COH	Power Control	R/W		
C1H	Clock Selection	R/W		
C2H	RF ADC Diagnostic Control 1	R/W		
СЗН	RF ADC Diagnostic Control 2	R/W		
C4H	Analog Diagnostic	R/W		
C5H-C7H	RF ADC Diagnostic Accumulator	R		
C8H	Laser Diode 1 Control	R/W		
C9H	Laser Diode 2 Control	R/W		
CAH	Reference Voltage/Diode/RF Amp Configuration	R/W		
CBH	Pickup Interface	R/W		
ССН	Analog Static Data Channel VGA	R/W		
CDH	Analog Static Data Channel LPF	R/W		
CEH	RF ADC Calibration Control	R/W		
CFH	Bandgap Reference Calibration Control	R/W		
D0H	Moving-Average Filter/Digital Filtering 1	R/W		
D1H	Digital Filtering 2	R/W		
D2H	Zone Control	R/W		
D3H	Offset Loop Control	R/W		
D4H	Automatic Gain Control	R/W		
D5H	Gain Loop Accumulator Layer 0 and Layer 1	R/W		
D7H	Offset Loop Accumulator Layer 0 and Layer 1	R/W		
D8H	RF Envelope Detector Read	R/W		
D9H	LF Envelope Detector	R/W		
DAH	Topstate Monitor	R/W		
DBH	Asymmetry Accumulator Layer 0 and Layer 1	R/W		
DCH	Asymmetry Control	R/W		
DDH	Channel Top Level State Control 1	R/W		
DEH	Channel Top Level State Control 2	R/W		
DFH	Channel Top Level State Control 3	R/W		
E0H	DPLL Control 1	R/W		
E1H	DPLL Control 2	R/W		
E2H	DPLL Control 3	R/W		
E3H	Sequence Detector			
E4H-E5H	DPLL Center Period Accumulator	R/W		
E6H-E7H	Channel Quality Accumulator	R		
E8H	Channel Quality Mode Select	R/W		
E9H	Defect Control 1	R/W		
EAH	Defect Control 2	R/W		
EBH	Defect Control 3	R/W		

Table 1: CL-CR3710 Registers

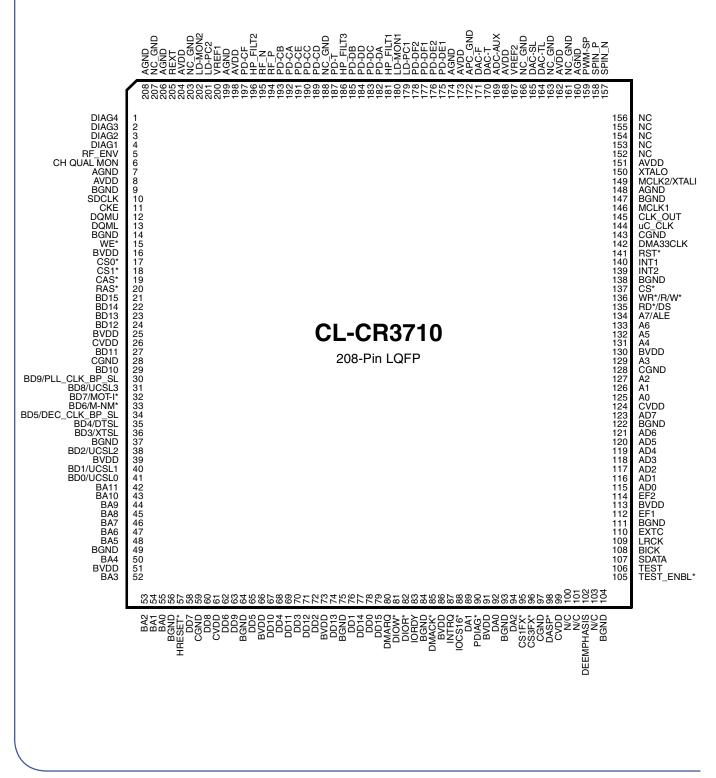

Address (Hex)	Register Name	R/W		
ECH	RF BCA Slicer	R/W		
EDH	RF BCA Parser	R/W		
EFH	Digital Diagnostic	R/W		
F0H	Track Crossing Control	R/W		
F1H	Servo Control	R/W		
F2H	SCP Program Command (SPC)	R/W		
FBH	SCP State Generator M Divider	R/W		
FCH	SCP State Generator N/P Dividers	R/W		
FDH	Memory Data R/W			
FEH-FFH	SCP Memory Control/Address	R/W		

Table 1: CL-CR3710 Registers

Pinout Information

Pinout Diagram

CIRRUS LOGIC®

www.cirrus.com

Pin Decriptions

Table 2: Pin Map Legend

Abbreviation or Convention	Description			
I	A pin that functions as an input only.			
0	A pin that functions as an output only.			
I/O	A pin that operates as an input or an output.			
OD	An open-drain output.			
TS	A test pin.			
Z	A tristate output or input/output.			
(*)	Following a signal name designates an active-low signal.			
Pin name in italics	An <i>italicized</i> function name for a multifunction pin indicates that the function is only valid on the low-to-high transition of RST*.			

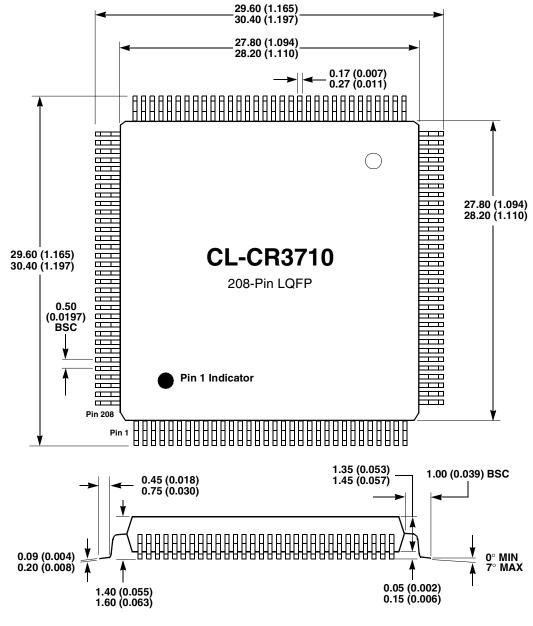
Table 3: CL-CR3710 Pin Map

Туре	Name	Pin(s)	I/0	Function
	DD15	79	I/O-TS	
	DD14	77	I/O-TS	
	DD13	74	I/O-TS	
	DD12	71	I/O-TS	
	DD11 DD10	69 67	I/O-TS I/O-TS	
	DD10 DD9	63	1/0-15 1/0-TS	
	DD9 DD8	60	I/O-TS	
	DD7	58	I/O-TS	Host Data Bus
	DD6	62	I/O-TS	
	DD5	65	I/O-TS	
	DD4	68	I/O-TS	
	DD3	70	I/O-TS	
Host	DD2	72	I/O-TS	
Interface	DD1	76	I/O-TS	
Signals	DD0	78	I/O-TS	
9	DA2	94	I	
	DA1	89	I	Host Address Lines
	DA0	92	I	
	CS1FX*	95	I	Host Chip Select 0*
	CS3FX*	96	I	Host Chip Select 1*
	DIOR*	82	I	Host I/O Read Strobe*
	DIOW*	81	I	Host I/O Write Strobe*
	HRESET*	57	I	Host Reset*
	IOCS16*	88	OD	16-bit Data Transfer*
	INTRQ	87	O -TS	Host Interrupt Request
	IORDY	83	O -TS	I/O Channel Ready

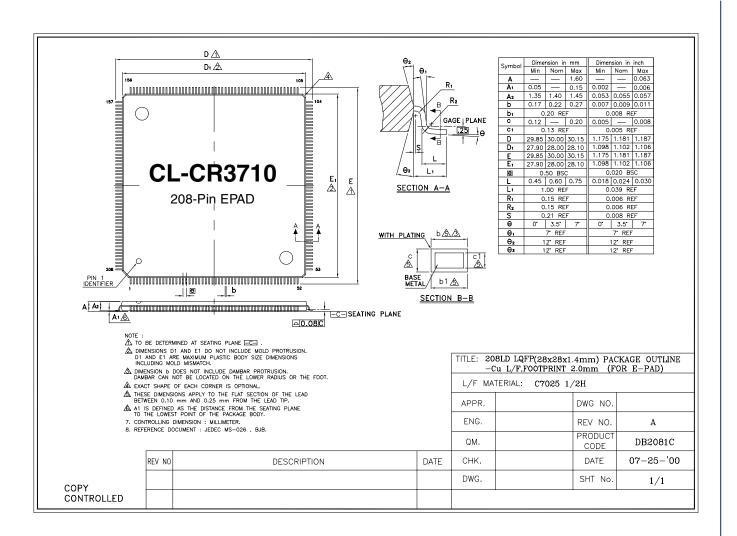
Туре	Name	Pin(s)	I/0	Function
	DMARQ	80	O -TS	DMA Request
Host Interface Signals (cont.)	DMACK*	85		DMA Acknowledge*
	PDIAG*	90	I/O	Passed Diagnostics*
orginalo (oonti.)	DASP*	98	I/O	Slave Present
	SDCLK	10	0	SDRAM CLK
	CKE	11	0	Clock Enable
	DQMU	12	0	Upper Data Mask Enable
	DQML	13	0	Lower Data Mask Enable
	WE*	15	0	Write Enable
	CS0*	17	0	Chip Select 0
	CS1*	18	0	Chip Select 1
	CAS*	19	0	Column Address Strobe Low
	RAS*	20	0	Row Address Strobe
	BA11 BA10 BA9	42 43 44	0 0 0	
Buffer Interface Signals	BA8 BA7 BA6	45 46 47	0 0 0	Buffer Address [11:0]
	BA5 BA4 BA3 BA2 BA1	48 50 52 53 54	0 0 0 0	
	BA0 BD15 BD14 BD13 BD12 BD11 BD10	55 21 22 23 24 27 29	0 1/0 1/0 1/0 1/0 1/0 1/0	Buffer Data Bus
	BD9/ PLL_CLK_BP_SL	30	I/O	Buffer Data Bus Bit 9 / PLL Clock Bypass
	BD8/UCSL3	31	I/O	Buffer Data Bus Bit 8 / uComputer Clock Select
·	BD7/MOT-I*	32	I/O	Buffer Data Bus Bit 7 / Motorola-Intel
	BD6/M-NM*	33	I/O	Buffer Data Bus Bit 6 / Multiplexed - Nonmultiplexed
	BD5/ DEC_CLK_BP_SL	34	I/O	Buffer Data Bus Bit 5 / Decoder Clock
	BD4/DTSL	35	I/O	Buffer Data Bus Bit 4 / Drive Test Select
	BD3/XTSL	36	I/O	Buffer Data Bus Bit3 / XTAL Select
-	BD2/ <i>UCSL2</i> BD1/ <i>UCSL1</i> BD0/ <i>UCSL0</i>	38 40 41	I/O	Buffer Data Bus Bit 2-0 / uComputer Clock Select

Туре	Name	Pin(s)	I/O	Function	
	AD7	123	I/O		
	AD6	121	I/O		
	AD5	120	I/O		
	AD4	119	I/O	Local Microcontroller Address And Data Bus	
	AD3	118	I/O		
	AD2 AD1	117 116	I/O I/O		
	AD1 AD0	115	1/O 1/O		
	ADU	115	1/0		
	A7/ALE	134	I	Local Microcontroller Address Bus Bit 5 / Address Latch Enable	
	A6	133	I		
Microcontroller	A5	132	I		
Interface	A4	131	I		
Signals	A3	129	I	Local Microcontroller Address Bus	
	A2	127			
	A1	126			
	A0	125			
	CS*	137	 	Chip Select*	
	RD*/DS	135		Read Strobe*/data Strobe	
	WR*/ R/W*	136		Write Strobe/ Read/write*	
	INT1	140	O-OD	Interrupt1	
	INT2	139	O-OD	Interrupt2	
	RST*	141	I	Reset*	
	SPIN_P	158		Spin Transducer	
	SPIN_N	157	I		
	DAC-TL	164	0	Tilt DAC	
Servo	DAC-SL	165	0	Sled DAC	
Analog	DAC-F	171	0	Focus DAC	
Interface	DAC-T	170	0	Tracking DAC	
Signals	ADC-AUX	169	I	Auxiliary ADC	
	PWM-SP	159	0	Spin PWM	
	EXTC	110	I	External Track Count	
	VREF2	167	0	Voltage Reference 2	
	LRCK	109	0	Left/Right Clock	
Audio Interface	BICK	108	0	Bit Clock	
Signals	SDATA	107	0	Serial Data	
	DEEMPHASIS	102	0	Deemphasis	

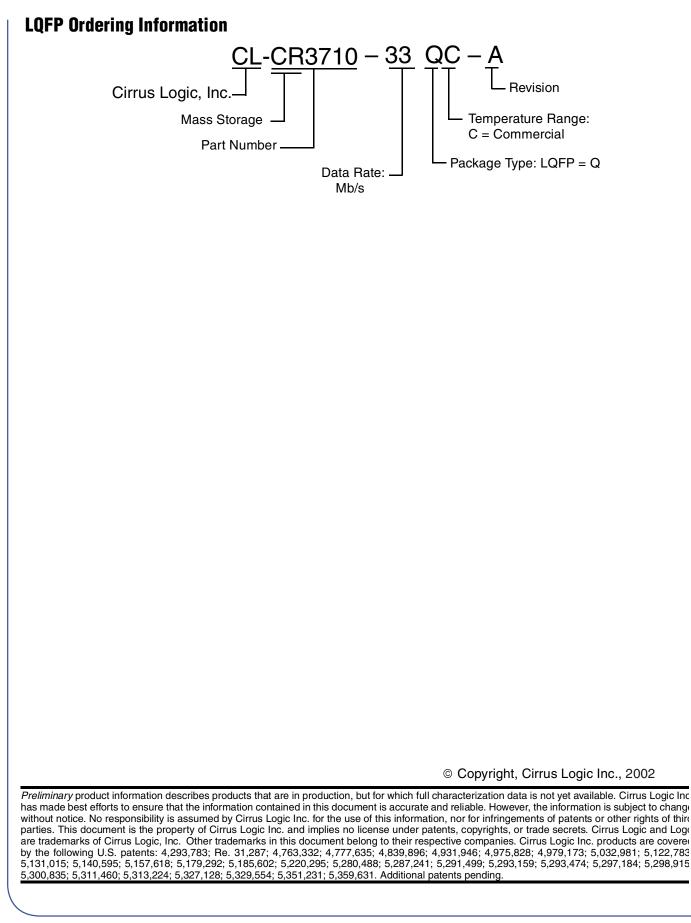
Туре	Name	Pin(s)	I/0	Function
Clock Interface Signals	MCLK1	146	1	Master Clock 1
	MCLK2/XTALI	149	I	Master Clock 2 / Crystal Input
	XTALO	150	0	Crystal Output
	DMA33CLK	142		DMA33 Clock
	CLK_OUT	145	0	Clock Output
	uC_CLK	144	0	Microcontroller Clock
RF Amplifier Interface Signals	PD-DE1 PD-DE2 PD-DF1 PD-DF2	175 176 177 178		Servo Differential Push Pull Amp Inputs
	PD-DA PD-DC PD-DD PD-DB	182 183 184 185		Photo Detector-DVD
	RF_P RF_N	194 195		RF External Summation Inputs
	PD-CA PD-CB PD-CC PD-CD	192 193 190 189		Photo Detector-CDROM
	PD-CE PD-CF	191 197		Photo Detector E & F-CDROM
	PD-T	187		Photo Detector-T
	LD-PC1 LD-PC2	179 201	0 0	Laser Diode Power Control
	LD-MON1 LD-MON2	180 202		Laser Diode Monitor
	VREF1	200	I/O	Voltage Reference 1
	REXT	205	I/O	External Resistor
	HP_FILT1 HP_FILT2 HP_FILT3	181 196 186		High Pass Filter
Diagnostic Signals	DIAG1 DIAG2 DIAG3 DIAG4	4 3 2 1	I/O I/O I/O I/O	Diagnostic 1-4
	RF_ENV	5	0	RF Envelope
	CH QUAL MON	6	0	Channel Quality Monitor
	EF2 EF1	114 112	0 0	Error Flag (2:1)
	TEST_ENBL*	105		Test Enable
	TEST	106		Test


Туре	Name	Pin(s)	I/O	Function
	AVDD	8 , 151, 162, 168, 173, 198, 204	-	Analog Power Supply
	AGND	7, 148, 160, 174, 199, 206, 208	-	Analog Ground
	BVDD	16, 25, 39, 51, 66, 73, 86, 91, 113, 130	_	Buffer Power Supply
Power and Ground Pins	BGND	9, 14, 37, 49, 56, 64, 75, 84, 93, 104, 111, 122, 138, 147	-	Buffer Ground
	CVDD	26 , 61 , 99, 124	-	Core Power Supply
	CGND	28, 59, 97, 128, 143	-	Core Ground
	APC_GND	172	_	Apc Ground
	NC_GND	161, 163, 166, 188, 203, 207	-	Nc Ground

Package And Order Information


Package Information

For complete dimensional and thermal information, see the latest version of the Cirrus Logic *Package Information Guide*. The package and PCB design affects the amount of power that can be dissipated by the package and could limit the maximum transfer rate.



Note: Dimensions are in millimeters (inches), and controlling dimension is millimeter. Drawing above does not reflect exact package pin count. Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.



21

