CML Semiconductor Products PRODUCT INFORMATION

Features/Applications

- 8 Digitally Controlled Low-Noise Amplifiers
- 15 Gain/Attenuation Steps
- 7 Trimmers, with $\mathbf{a} \pm 3 \mathrm{~dB}$ Range in 0.43 dB Steps
- 1 'Volume' Trimmer, with a $\pm 14 \mathrm{~dB}$ Range in 2.0dB Steps
- 8-Bit Serial Data Control
- Output Mute/Powersave Function
- Audio and Data Gain Control Applications
- Cellular, PMR, PABX Applications

CONTROLLED AUDIO OUTPUT LINES

FX009A

Fig. 1 Functional Block Diagram

Brief Description

The FX009A Digitally Adjustable Amplifier Array is intended to replace trimmer potentiometers and volume controls in Cellular, PMR, Telephony and
Communications applications where d.c., voice or data signals need adjustment.
The FX009A is a low-noise single-chip LSI consisting eight digitally controlled amplifier stages, each with 15 distinct gain/attenuation steps. Control of each individual amplifier is by an 8-bit serial data stream. Seven of the amplifier stages offer a $+/-3 \mathrm{~dB}$ range in steps of 0.43 dB , whilst the remaining amplifier offers a $+/-14 \mathrm{~dB}$ range in steps of 2 dB , and is intended for volume control applications. Each amplifier includes a 16th 'Mute' state which sets the output to bias ($\mathrm{V}_{\mathrm{DD}} / 2$) and powersaves the entire section. Minimum current drain may be achieved by muting all eight sections.

This product replaces the need for manual trimming of audible signals by using the host microprocessor to digitally control the set-up of all audio levels.

Applications include:
(i) Control, adjustment and set-up of communications equipment by an Intelligent ATE without manual intervention - eg. Deviation, Microphone and L/S Level, Rx Audio Level etc.
(ii) Automatic Dynamic Compensation of drift caused by variations in temperature, linearity, etc.
(iii) Fully automated servicing and re-alignment.

The FX009A is a low-power, single 5 -volt CMOS device available in both 24-pin DIL and SMD package versions.

Pin Number

FX009A J	FX009A LG/LS
1	1
2	2

Function

Serial Clock : This external clock pulse input is used to "clock in" the Control Data. See Figure 4, Data Load Timing. This input has an internal $1 \mathrm{M} \Omega$ pullup resistor.

Load/Latch : Governs the loading and execution of the control data. During serial data loading this input should be kept at a logical ' 0 ' to ensure that data rippling past the latches has no effect. When all 8 bits have been loaded, this input should be strobed ' 0 ' $\Rightarrow{ }^{\prime} 1$ ' \Rightarrow ' 0 ' to latch the new data in. Data is executed on the falling edge of the strobe. If the Load/Latch input is used this pin should be left open circuit. This input has an internal $1 \mathrm{M} \Omega$ pullup resistor.

Load/Latch : The inverted Load/Latch input. This function governs the loading and execution of the control data. During serial data loading this input should be kept at a logical ' 1 ' to ensure that data rippling past the latches has no effect. When all 8 bits have been loaded, this input should be strobed '1' - '0' - '1' to latch the new data in. Data is executed on the rising edge of the strobe. If the Load/Latch input is used this pin should be left open circuit. This input has an internal $1 \mathrm{M} \Omega$ pulldown resistor.

Ch1 Input: Analogue Inputs :

Ch2 Input :
These individual amplifier inputs are self-biasing, a.c. input analogue signals must be capacitively coupled to these pins, as shown in Figure 2.
In the powersave modes the inputs are biased at $\mathrm{V}_{\mathrm{DD}} / 2$.
Ch4 Input: \quad Note that amplifiers Ch1 to Ch8 are 'inverting amplifiers.'
$\mathrm{V}_{\text {BIAS }}$: The output of the on-chip bias circuitry, held at $\mathrm{V}_{\mathrm{DD}} / 2$. This pin should be decoupled to $\mathrm{V}_{\text {ss }}$ as shown in Figure 2.

Ch5 Input: Analogue Inputs :
Ch6 Input:
Ch7 Input :
Ch8 Input :
V_{ss} : Negative supply rail (GND).
Ch8 Output: Analogue Outputs:
Ch7 Output: \quad The individual "Gain Controlled" amplifier outputs. Ch1 to Ch7 range from -3 dB to +3 dB in 0.43 dB steps, Ch8 Ch6 Output: could be utilized as a volume control, ranging from -14 dB to +14 dB in 2.0 dB steps.
Ch5 Output: In the powersave mode the selected output is biased at $\mathrm{V}_{\mathrm{DD}} / 2$.
No internal connection. Do not use.
Ch4 Output: Analogue Outputs
Ch3 Output: \quad Note that amplifiers Ch1 to Ch8 are 'inverting amplifiers.'
Ch2 Output :
Ch1 Output :
V_{DD} : Positive supply rail. A single +5 -volt power supply is required.
Control Data Input: Operation of the 8 amplifier channels (Ch1 - Ch8) is controlled by the 8 bits of data entered serially at this pin. The data is entered (bit 7 to bit 0) on the rising edge of the external Serial Clock. The data format is described in Tables 1, 2 and Figure 4. This input has an internal $1 \mathrm{M} \Omega$ pullup resistor.

Application Notes

Fig. 2 External Component Connections

Application Recommendations

To avoid excess noise and instability in the final installation it is recommended that the following points be noted.
(a) A noisy or badly regulated power supply can cause instability and/or variance of selected gains.
(b) Care should be taken on the design and layout of the printed circuit board.
(c) All external components (Figure 2) should be kept close to the FX009A package.
(d) Inputs and outputs should be screened wherever possible.
(e) Tracks should be kept short.
(f) Analogue tracks should not run parallel to digital tracks.
(g) A "Ground Plane" connected to $\mathrm{V}_{\text {SS }}$ will assist in eliminating external pick-up on the channel input and output pins.
(h) Do not run high-level output tracks close to lowlevel input tracks.
(i) Input signal amplitudes should be applied with due regard to Figure 3.

Fig. 3 SINAD vs Input Level - Typical Values

The gain of each amplifier block (Channel 1 to Channel 8) in the FX009A is set by a separate 8-bit data word (bit 7 to bit 0). This 8 -bit word, consisting of 4 Address bits (bit 7 to bit 4) and 4 Gain Control bits (bit 3 to bit 0), is loaded to the Control Data Input in serial format using the external data clock.

Data is loaded to the FX009A on the rising edge of the Serial Clock. Loaded data is executed on the falling (rising) edge of the Load/Latch (Load/Latch) pulse. Table 1 shows the format of each 4-bit Address word, Table 2 shows the format of each Gain Control word with Figure 4 describing the data loading operation and timing.

Table 2 Gain Control Word Format						
Bit 3 MSB	Bit2	Bit 1	Bit 0 LSB	Stage 1 to 7 $(\mathbf{0 . 4 3 d B)}$	Stage 8 $(\mathbf{2 . 0 d B})$	
0	0	0	0	Powersave	Powersave	
0	0	0	1	-3.0	-14.0	dB
0	0	1	0	-2.571	-12.0	dB
0	0	1	1	-2.143	-10.0	dB
0	1	0	0	-1.714	-8.0	dB
0	1	0	1	-1.286	-6.0	dB
0	1	1	0	-0.857	-4.0	dB
0	1	1	1	-0.428	-2.0	dB
1	0	0	0	0	0	dB
1	0	0	1	0.428	2.0	dB
1	0	1	0	0.857	4.0	dB
1	0	1	1	1.286	6.0	dB
1	1	0	0	1.714	8.0	dB
1	1	0	1	2.143	10.0	dB
1	1	1	0	2.571	12.0	dB
1	1	1	1	3.0	14.0	dB

SERIAL DATA CLOCK

Timing

$\mathbf{t}_{\text {PwH }}$
Serial Clock "High" Pulse Width
$t_{\text {pwL }}$

Serial Clock "Low" Pulse Width

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{DS}} \\
& \text { Data Set-up Time } \\
& \mathrm{t}_{\mathrm{DH}} \\
& \text { Data Hold Time }
\end{aligned}
$$

$t_{\text {LLD }}$
Load/Latch Delay
$t_{\text {Luw }}$
Load/Latch Pulse Width
$t_{\text {Lıo }}$
Load/Latch Over Time

Fig. 4 Serial Control Data Loading Diagram

Specification

Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not implied.
Supply voltage
Input voltage at any pin (ref $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

$$
\begin{aligned}
& -0.3 \text { to } 7.0 \mathrm{~V} \\
& -0.3 \text { to }\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right) \\
& +/-30 \mathrm{~mA} \\
& +/-20 \mathrm{~mA} \\
& 800 \mathrm{~mW} \text { Max. } \\
& 10 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
& -30^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (cerdip) } \\
& -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { (plastic) } \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (cerdip) } \\
& -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (plastic) }
\end{aligned}
$$

Sink/source current (supply pins)
(other pins)
Total device dissipation @ $\mathrm{T}_{\text {AMB }} 25^{\circ} \mathrm{C}$
Derating
Operating temperature range: FX009A J
FX009A LG/LS
Storage temperature range: FX009A J

Operating Limits

FX009A LG/LS

All device characteristics are measured under the following conditions unless otherwise specified:
$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$. Audio Level OdB ref: $=775 \mathrm{mVrms}$. Amplifier Gain Set $=0 \mathrm{~dB}$.

Characteristics		See Note	Min.	Typ.	Max.	Unit
Static Values						
Supply Current -						
- All Stages Quiescent			-	0.16	-	mA
- All Stages Operating			-	3.75	-	mA
Dynamic Values						
Control Functions						
Input Logic '1'			3.5	-	-	V
Input Logic '0'			-	-	1.5	V
Digital Input Impedances			0.5	1.0	-	M2
Amplifier Stages (General)						
Bandwidth (-3dB)			15.0	-	-	kHz
Output Impedance			-	0.8	3.0	k Ω
Total Harmonic Distortion		1	-	0.35	0.5	\%
Output Noise Level (per stage)		2	-	65.0	-	$\mu \mathrm{Vrms}$
Onset of Clipping		3	-	1.73	-	Vrms
Gain Variation		4	-	-	0.1	dB
Interstage Isolation			-	60.0	-	dB
"Trimmer" Stages (Ch1 - Ch7)						
Gain			-3.0		+3.0	dB
Gain per Step (15 in No.)			-	0.43	-	dB
Step Error		5	-	-	± 0.2	dB
Input Impedance			100.0	-	-	$\mathrm{k} \Omega$
"Volume" Stage (Ch8)						
Gain			-14.0		+14.0	dB
Gain per Step (15 in No.)			-	2.0	-	dB
Step Error		5	-	-	± 0.4	dB
Input Impedance			50.0	-	-	k Ω
Timing (Figure 4)						
Serial Clock "High" Pulse Width	$\left(\mathrm{t}_{\text {pwh }}\right)$		250	-	-	ns
Serial Clock "Low" Pulse Width	($\mathrm{t}_{\text {pwL }}$)		250	-	-	ns
Data Set-up Time	($\mathrm{tas}^{\text {a }}$)		150	-	-	ns
Data Hold Time	($\mathrm{toH}^{\text {(}}$)		50	-	-	ns
Load/Latch Over Time	(tho)		-	-	50.0	ns
Load/Latch Delay	(ttio)		200	-	-	ns
Load/Latch Pulse Width	(t $\mathrm{t}_{\text {LLw }}$)		150	-	-	ns MHz

Notes

1. Gain Set 0dB, Input Level $1 \mathrm{kHz}-3.0 \mathrm{~dB}$ (549mVrms).
2. a.c short-circuit input, measured in a 30 kHz bandwidth.
3. See Figure 3.
4. Over temperature and supply voltage range.
5. With reference to a 1.0 kHz signal.

Package Outlines

The FX009A is available in the package styles outlined below. Mechanical package diagrams and specifications are detailed in Section 10 of this document.
Pin 1 identification marking is shown on the relevant diagrams and pins on all package styles number anticlockwise when viewed from the top.

FX009AJ 24-pin cerdip DIL

Ordering Information

FX009AJ 24-pin cerdip DIL
$\begin{array}{ll}\text { FX009ALG } & \begin{array}{l}\text { 24-pin quad plastic } \\ \text { encapsulated bent and cropped }\end{array}\end{array}$

FX009ALS 24-lead plastic leaded chip carrier

Handling Precautions

The FX009A is a CMOS LSI circuit which includes input protection. However precautions should be taken to prevent static discharges which may cause damage.

FX009ALG 24-pin quad plastic encapsulated bent and cropped

