RF25A

RF25A for CDMA, and AMPS Applications

The RF25A device includes the following functional blocks:

- Low Noise Amplifier (LNA)
- RF Downconverted Mixer
- Intermediate Frequency (IF) Variable Gain Amplifier (VGA)
- In-Phase and Quadrature (I/Q) Demodulator
- Voltage Controlled Oscillator (VCO)

The RF25A Application-Specific Integrated Circuit (ASIC) is a dual-mode, singleband receiver (Rx) intended for use in Code Division Multiple Access (CDMA) portable phones in the cellular band. It can be used in CDMA mode or Advanced Mobile Phone System (AMPS) mode. The ASIC provides excellent RF performance with low DC power dissipation and is assembled in a low cost, high performance, 40-pin Land Grid Array (LGA) $6 \times 6 \mathrm{~mm}$ package.

The device incorporates all the components required to implement the complete dual-mode receiver front end; from the Low Noise Amplifier (LNA) to the In-Phase and Quadrature (I/Q) demodulator stages, except for external SAW filters. The LNA amplifies the incoming signal and outputs to an external SAW filter. After filtering, the signal goes to the mixer for downconversion. The mixer output for the AMPS mode is single-ended, followed by the external AMPS Intermediate Frequency (IF) Surface Acoustic Wave (SAW) filter. The mixer output for the CDMA mode mixer has balanced outputs for external IF SAW filtering. The IF SAW filters are followed by a Variable Gain Amplifier (VGA) and and I/Q demodulator. The mode selection is controlled by a mode control pin.

The IF filter outputs are buffered at the input of the VGA, which has a dynamic range greater than 90 dB .

The on-chip Very High Frequency (VHF) Voltage Controlled Oscillators (VCO) operates with an external tank circuit to provide the Local Oscillator (LO) signal for the I/Q demodulator.

The Gain, Noise Figure (NF), and third order Input Intercept (IIP3) of each stage in the receiver chip are optimized to meet the system requirements for AMPS and CDMA modes according to the TIA/EIA 98-B standard. Employing silicon bipolar technology, the ASIC is designed for high performance with a high level of integration and provides a cost-effective RF solution for dual-mode phone applications

The RF25A pin-out is shown in Figure 1, a functional block diagram is illustrated in Figure 2, and a schematic diagram in Figure 3.

Features

- Dual-Mode Operation
- Battery operation 2.7 to 3.6 V
- High level of integration
- Differential I/Q outputs for baseband interfaces
- On-chip 100 to 600 MHz VCO
- Low DC consumption: < 60 mA
- 40 -pin Land Grid Array (LGA) $6 \times 6 \mathrm{~mm}$ package

Applications

- CDMA and AMPS handset in the cellular band:
- AMPS
- CDMA (US)
- CDMA (Japan)

Figure 1. RF25A Rx ASIC Pin-out 40-Pin LGA Package

Figure 2. RF25A Rx ASIC Block Diagram

Technical Description

Low Noise Amplifier (LNA). The LNA is designed with a high gain, low noise figure, and high 3rd order input intercept (IIP3) performance. These parameters can be optimized with the mixer gain, noise figure, and IIP3 to achieve the cascade NF and IIP3 system requirements. RF25A pin 2 is LNA decoupled, requiring a RF bypass capacitor to ground with minimal trace length. Input and output matching networks are external to the Rx ASIC.

Mixers. The active double balanced mixer is designed for high gain, a low noise figure, and high IIP3 performance. The mixer can also be optimized for RF performance to complement the LNA RF performance, and satisfy overall Rx NF and IIP3 system requirements. The LO port operates with a typical LO drive level of -10 dBm . The mixer has a balanced output to drive the IF SAW filter in CDMA mode, and single-ended output to drive the IF SAW filter in the AMPS mode.

Variable Gain Amplifier (VGA). The high dynamic range required by a CDMA handset is achieved by the VGA, which has a minimum dynamic range of 90 dB and a control voltage range from 0.5 to 2.5 V . The VGA is common in both modes (CDMA and AMPS) by switching its internal input buffers.

I/Q Demodulator. The I/Q Demodulator is designed for mobile handset application. It has an on-chip generated VHF LO with a typical operating range of 100 to 600 MHz and a typical I/Q output operating range of 0 to 5 MHz . The I/Q Demodulator is internally connected to the VGA output, and is fully differential to reduce common mode noise. DC offsets between differential I/Q outputs, and between I and Q channels, are extremely low to facilitate compatibility with baseband interfaces. The I/Q Demodulator is also designed to have very low amplitude and phase imbalance.

VHF Oscillator. With external tank circuits, the VCO provides the LO signal to drive the demodulator, and the prescaler of an external Phase Locked Loop (PLL). The oscillator can operate at two or four times at twice the IF frequency. Using a selectable divide ratio, the LO for the I/Q demodulator is derived. The logic signal to select the divider ratio (2 or 4) is available on Pin 13 (DIV2/DIV4).

Mode Control. The operation of the chip is controlled by signals at Pin 7 (FM/CDMA), Pin 20 (SLEEP), and Pin 13 (DIV2/DIV4). All the switching is done internally. The supply voltage should be present at all the VCC pins for normal operation. The modes selected are shown in Table 4.

Electrical and Mechanical Specifications

Included in this document are Tables 1 through 5 and Figures 1 through 4, which define and illustrate the electrical and mechanical specifications of the RF25A.

Table 1: \quad RF25A Pin Assignments and Signal Descriptions

Table 2: \quad Absolute Maximum Ratings
Table 3: \quad Recommended Operating Conditions
Table 4: \quad Mode Control Select Signal Switching
Table 5: \quad RF25A RX ASIC Electrical Specifications
Figure 1: \quad RF25A Rx ASIC Pin-out - 40-Pin LGA $6 \times 6 \mathrm{~mm}$ Package

Figure 2: \quad RF25A Rx ASIC Block Diagram
Figure 3-19: Typical Functional Block Performance
Figure 20: RF25A Schematic Diagram
Figure 21: RF25A Package Dimensions - 40-Pin LGA $6 \times 6 \mathrm{~mm}$ Package

Figure 22: 40-Pin LGA Tape and Reel Dimensions

ESD Sensitivity

The RF25A is a Class 1 device. The following extreme Electrostatic Discharge (ESD) precautions are required according to the Human Body Model (HBM):

- Protective outer garments.
- Handle device in ESD safeguarded work area.
- Transport device in ESD shielded containers.
- Monitor and test all ESD protection equipment.

The HBM ESD withstand threshold value, with respect to ground, is $\pm 1.5 \mathrm{kV}$. The HBM ESD withstand threshold value, with respect to VDD (the positive power supply terminal) is also $\pm 1.5 \mathrm{kV}$.

Table 1. RF25A Pin Assignments and Signal Descriptions (1 of 3)

Pin \#	Name	Description	Equivalent Circuit
1	NC	No connection.	
2	LNA_DECOUPLE	An RF bypass capacitor (1000 pF) with very short trace should be connected to this pin.	
3	NC	No connection	
4	LNA_IN	The input to LNA needs external matching. The matching network should be placed as close to this pin as possible. High Q components are recommended to minimize the effect on the noise figure. A DC blocking capacitor is necessary at the input.	
5	VCC_RFBIAS	Supply voltage to the RF bias. An RF bypass capacitor should be connected from the pin to ground with short traces.	
6	BIAS_SET	This pin sets the cellular RF bias current. Typically, a 180Ω resistor is connected from the pin to ground.	
7	FM/CDMA	Cellular band mode select: $0=$ AMPS; $1=$ CDMA.	
8	VCC_VCO	Voltage supply pin to the VCO buffer. A bypass capacitor should be placed close to the device from pin 8 to pin 9 . The trace should be short and connected immediately to the ground plane for best performance.	
9	GND	Ground return from the VCO buffer.	
10	TANK-	Differential tank connection for the cellular band VCO. Care should be taken during the layout of the external tank circuit to prevent parasitic oscillations.	
11	TANK+	Differential tank connection for the cellular band VCO. Care should be taken during the layout of the external tank circuit to prevent parasitic oscillations.	
12	NC	No connection.	
13	DIV2/DIV4	Selects the divide ratio of the VCO to the LO port of the I/Q demodulator: $0=$ divide by 2 , 1 = divide by 40 .	
14	PLL+	Differential buffered VCO output	
15	PLL-	Differential buffered VCO output	
16	I+	I channel differential output.	$\underline{\varphi}$
17	$1-$	I channel differential output.	
18	Q+	Q channel differential output.	
19	Q-	Q channel differential output.	
20	$\overline{\text { SLEEP }}$	Activates sleep mode: $0=$ sleep; $1=$ enable	

Table 1. RF25A Pin Assignments and Signal Descriptions (2 of 3)

Pin\#	Name	Description	Equivalent Circuit
21	VGA_CONTROL	VGA voltage input. Input impedance is greater than $50 \mathrm{~K} \Omega$.	
22	VCC_IF	Voltage supply to VGA and I/Q demodulator stages. Supply should be well regulated and bypassed to prevent modulation of the signal by the supply ripple.	
23	VGA_CDMA_IN+	CDMA differential VGA input	
24	VGA_CDMA_IN-	CDMA differential VGA input	
25	VGA_AMPS_IN	AMPS VGA input.	
26	MIX_BYPASS	Low frequency bypass for the amps mixer.	
27	CDMA_MIXEROUT+	CDMA differential mixer output. Requires an external inductor to VCC. An external match sets output impedance.	
28	CDMA_MIXEROUT-	CDMA differential mixer output. Requires an external inductor to VCC. An external match sets output impedance.	
29	AMPS_MIXEROUT	AMPS mixer output. Requires an external inductor to VCC. An external match sets output impedance.	$\mathrm{O}_{7} \quad \frac{\mathrm{Vcc}}{\mathrm{C}}$
30	NC	No connection.	
31	NC	No connection.	
32	LO_IN	The mixer local oscillator input drive is typically -10 dBm .	
33	NC	No connection.	

Table 1. RF25A Pin Assignments and Signal Descriptions (3 of 3)

Pin\#	Name	Description	Equivalent Circuit
34	VCC_MIX	Voltage supply pin for the mixers. An RF bypass capacitor should be connected from this pin to ground. It should be connected as close to the device as possible with very short trace lengths.	
35	MIX_IN	Cellular mixer input.	
36	IF_TRAP	The parallel LC circuit is tuned to the cellular IF frequency.	
37	MIXEMIT	Typical ground connection, but a 1.5 nH emitter degeneration can be used to improve mixer input IP3.	See Pin 35
39	LNA_OUT	This is an open collector LNA output. An inductor must be connected to VCC. The matching is done externally to the chip.	
40	NC		

Table 2. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units
Supply voltage (VCC)	-0.3	5.0	V
Input voltage range	-0.3	VCC	V
LNA input power		+5	dBm
Power dissipation		600	mW
Operating temperature	-30	+80	${ }^{\circ} \mathrm{C}$
Storage temperature	-40	+125	${ }^{\circ} \mathrm{C}$

Table 3. Recommended Operating Conditions

Parameter	Min	Typical	Max	Units
Supply voltage (VCC)	2.7	3.0	3.6	V
Operating temperature	-30	+25		+80
${ }^{\circ} \mathrm{C}$				
Impedance of logic inputs		50		$\mathrm{~K} \Omega$
Logic 0	0.0		0.5	V
Logic 1	VCC -0.5		VCC	V

Table 4. Mode Control Select Signal Switching

Pin\#	Name	AMPS	CDMA
7	$\overline{\text { FM/CDMA }}$	0	1
13	DIV2/DIV4	0	0
20	$\overline{\text { SLEEP }}$	1	1
Key: $0=$ LOW			
$1=$ HIGH			

Table 5. RF25A Rx ASIC Electrical Specifications (1 of 2) $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{PLO}=-10 \mathrm{dBm}$

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Cellular LNA						
Gain @ 881 MHz				14.5		dB
Gain variation over band ($869-894 \mathrm{MHz}$)					0.5	dB
Gain variation over temperature					1.5	dB
Noise figure @ 881 MHz				1.6		dB
Reverse isolation				20		dB
P1dB @ input				-5		dBm
IP3 @ input				8		dBm
Input return loss ($869-894 \mathrm{MHz}$)					-12	dB
Output return loss (869-894 MHz)				-15		dB
Total supply current (adjustable)				11		mA
Cellular Mixer						
Conversion gain (power): CDMA mode AMPS mode				$\begin{aligned} & 14 \\ & 11 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Single-sideband noise figure: CDMA mode AMPS mode				$\begin{gathered} 7.5 \\ 8 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
P1dB @ input: CDMA mode AMPS mode				$\begin{aligned} & -6 \\ & -9 \end{aligned}$		dBm dBm
IP3 @ input: CDMA mode AMPS mode				$\begin{aligned} & +5 \\ & +3 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Mixer RF input return loss, RF port 1 (869-894 MHz)				-15		dB
LO input power level				-10		dBm
IF output resistance: CDMA mode (differential) AMPS mode (single-ended)				$\begin{aligned} & 3000 \\ & 1000 \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
IF frequency range					300	MHz
LO/RF input isolation				20		dB
Total supply current (Adjustable)				18		mA
Rx VGA - I/Q Demodulator						
Frequency range			50		300	MHz
Input impedance: CDMA input (differential) AMPS input (single-ended)				$\begin{aligned} & 1000 \\ & 1000 \\ & \hline \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Gain: Maximum Minimum Maximum (AMPS) Minimum (AMPS)			$\begin{gathered} 53 \\ -47 \\ 61 \\ -39 \end{gathered}$	$\begin{gathered} 54 \\ -42 \\ 62 \\ -34 \end{gathered}$	$\begin{gathered} 55 \\ -37 \\ 63 \\ -29 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

Table 5. RF25A Rx ASIC Electrical Specifications (2 of 2) $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{PLO}=-10 \mathrm{dBm}$

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Rx VGA - I/Q Demodulator (continued)						
Gain slope				45		dB/
Gain slope linearity (over any 6 dB segment)			-3		+3	dB
IF amplifier IIP3: @ Maximum gain (CDMA mode) @ Maximum gain (AMPS mode)				$\begin{aligned} & -50 \\ & -58 \end{aligned}$		dBm
Input 1 dB compression @ minimum gain				-10		dBm
IF amplifier noise figure: @ Maximum CDMA gain @ Minimum CDMA gain @ Maximum AMPS gain				$\begin{gathered} 6 \\ 50 \\ 8 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Output level: CDMA AMPS				$\begin{gathered} 2.75 \\ 5.5 \end{gathered}$		mVrms mVrms
Maximum output level			1.4			Vp-p
Gain variation over frequency: CDMA ($1-630 \mathrm{kHz}$) AMPS (0.1-12.2 kHz)				$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
I+, I-, and Q+, Q- DC offset					6	mVrms
I/Q gain mismatch				0.2	0.3	dB
I/Q phase mismatch				2	4	deg
I to Q DC offset					30	mV
Total supply current (includes I/Q mixers, LO buffers, and dividers)				12		mA
Oscillator						
Frequency range			100		600	MHz
Phase noise (fc $=200 \mathrm{MHz}$, unloaded $\mathrm{Q}=20$) @ 100 kHz offset				-117		dBc/Hz
Second harmonic distortion (application dependent)				-30	-26	dBc
Output level to PLL (differential)				300		mVp-p
Output impedance to PLL (differential)				300		Ω
Reverse isolation			-30		-40	dB
Total supply current				8		mA

Figure 3. Cellular LNA Gain @ 881 MHz

Figure 5. Cellular LNA IIP3 @ 881 MHz

Figure 7. AMPS Noise Figure
(RF Frequency $=881.52 \mathrm{MHz}$, LO Frequency $=966.90 \mathrm{MHz}$, IF Frequency $=85.38 \mathrm{MHz}$)

Figure 4. Cellular LNA Noise Figure @ 881 MHz

Figure 6. AMPS Mixer Gain
(RF Frequency $=881.52 \mathrm{MHz}$, LO Frequency $=966.90 \mathrm{MHz}$, IF Frequency $=85.38 \mathrm{MHz}$)

Figure 8. AMPS Mixer IIP3
(RF Frequency $=881.52 \mathrm{MHz}$, LO Frequency $=966.90 \mathrm{MHz}$, IF Frequency $=85.38 \mathrm{MHz}$)

Figure 9. CDMA Mixer Gain
(RF Frequency $=881.52 \mathrm{MHz}$, LO Frequency $=966.90 \mathrm{MHz}$, IF Frequency $=85.38 \mathrm{MHz}$)

Figure 11. CDMA Mixer IIP3
(RF Frequency $=881.52 \mathrm{MHz}$, LO Frequency $=966.90 \mathrm{MHz}$, IF Frequency $=85.38 \mathrm{MHz}$)

Figure 13. CDMA VGA + I/Q Over Supply
(IF Frequency $=85.38 \mathrm{MHz}$)

Figure 10. CDMA Mixer Noise Figure (RF Frequency $=881.52 \mathrm{MHz}$, LO Frequency $=966.90 \mathrm{MHz}$, IF Frequency $=85.38 \mathrm{MHz}$)

Figure 12. CMDA VGA + I/Q Gain vs. Temperature (IF Frequency $=85.38 \mathrm{MHz}$)

Figure 14. VGA + I/Q Gain in AMPS Mode
(Vcontrol = 2.5 V, Frequency $=85.38 \mathrm{MHz}$)

Figure 15. VGA + I/Q IIP3 in AMPS Mode (Vcontrol = 2.5 V , Frequency $=85.38 \mathrm{MHz}$)

Figure 17. VGA + I/Q IIP3 in CDMA Mode
(Vcontrol = 2.5 V , Frequency $=85.38 \mathrm{MHz}$)

Figure 16. VGA $+\mathrm{I} / \mathrm{Q}$ Gain in CDMA Mode (Vcontrol = 2.5 V, Frequency $=85.38 \mathrm{MHz}$)

Figure 18. VGA $+\mathrm{I} / \mathrm{Q}$ Noise Figure in AMPS Mode (Vcontrol = 2.5 V , Frequency $=85.38 \mathrm{MHz}$)

Figure 19. VGA + I/Q Noise Figure in CDMA Mode (Vcontrol = 2.5 V , Frequency $=85.38 \mathrm{MHz}$)

Figure 20. RF25A Schematic Diagram

Figure 21. RF25A Package Dimensions - 40-pin LGA $6 \times 6 \mathrm{~mm}$ Package

NOTES:

1. Carrier Tape Material: Black Conductive Polycarbonate
2. Cover Tape Material: Transparent Conductive PSA
3. Cover Tape Size: 9.3 mm width
4. Tolerance: . $X X= \pm 0.10$
5. All dimensions are in millimeters

CNXTO22

Figure 22. 40-pin LGA Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Product Revision
RF25A	RF25A-12	12

© 2000, Conexant Systems, Inc. All Rights Reserved

Information in this document is provided in connection with Conexant Systems, Inc. ("Conexant") products. These materials are provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Conexant's Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant ${ }^{\text {TM }}$, the Conexant C symbol, and "What's Next in Communications Technologies"TM. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

Additional information, posted at www.conexant.com, is incorporated by reference.
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications engineer.

Further Information	Europe North - England
literature@conexant.com	Phone: +44 (0)1189209500
(800) 854-8099 (North America)	Fax: $\quad+44(0) 1189209595$
(949) 483-6996 (International)	
Printed in USA	Europe - Israel/Greece
	Phone: +972 99524000
World Headquarters	Fax: +97299573732
Conexant Systems, Inc.	
4311 Jamboree Road	Europe South - France
Newport Beach, CA	Phone: +33141443651
92660-3007	Fax: + 33141443690
Phone: (949) 483-4600	
Fax 1: (949) 483-4078	Europe Mediterranean - Italy
Fax 2: (949) 483-4391	Phone: +39 0293179911
	Fax: +390293179913
Americas	
	Europe - Sweden
U.S. Northwest/	Phone: +46 (0) 850914319
Pacific Northwest - Santa Clara	Fax: $\quad+46(0) 859004110$
Phone: (408) 249-9696 Fax. +46 (0) 85900410	
Fax: (408) 249-7113	Europe - Finland
	Phone: +358 (0) 985666435
U.S. Southwest - Los Angeles	Fax: +358(0) 985666220
Phone: (805) 376-0559	
Fax: (805) 376-8180	Asia - Pacific
U.S. Southwest - Orange County	Taiwan
Phone: (949) 483-9119	Phone: (886-2) 2-720-0282
Fax: (949) 483-9090	Fax: (886-2) 2-757-6760
U.S. Southwest - San Diego	Australia
Phone: (858) 713-3374	Phone: (61-2) 98694088
Fax: (858) 713-4001	Fax: (61-2) 98694077
U.S. North Central - Illinois	China - Central
Phone: (630) 773-3454	Phone: 86-21-6361-2515
Fax: (630) 773-3907	Fax: 86-21-6361-2516
U.S. South Central - Texas	China - South
Phone: (972) 733-0723	Phone: (852) 2 827-0181
Fax: (972) 407-0639	Fax: (852) 2 827-6488
U.S. Northeast - Massachusetts	China - South (Satellite)
Phone: (978) 367-3200	Phone: (86) 755-518-2495
Fax: (978) 256-6868	
	China - North
U.S. Southeast - North Carolina	Phone: (86-10) 8529-9777
Phone: (919) 858-9110	Fax: (86-10) 8529-9778
Fax: (919) 858-8669	
	India
U.S. Southeast - Florida/	Phone: (91-11) 692-4789
South America	Fax: (91-11) 692-4712
Phone: (727) 799-8406	
Fax: (727) 799-8306	Korea
	Phone: (82-2) 565-2880
U.S. Mid-Atlantic - Pennsylvania	Fax: (82-2) 565-1440
Phone: (215) 244-6784	
Fax: (215) 244-9292	Korea (Satellite)
	Phone: (82-53) 745-2880
Canada - Ontario	Fax: (82-53) 745-1440
Phone: (613) 271-2358	
Fax: (613) 271-2359	Singapore
	Phone: (65) 7377355
Europe	Fax: (65) 7379077
Europe Central - Germany	
Phone: +49 89 829-1320	Phone: (81-3) 53711520
Fax: +49 89 834-2734	Fax: (81-3) 53711501

