256K x 16 Static RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=15 \mathrm{~ns}$
- Low active power - 612 mW (max.)
- Low CMOS standby power (Commercial L version) - 1.8 mW (max.)
- 2.0V Data Retention ($600 \mu \mathrm{~W}$ at 2.0 V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ features

Functional Description

The CY7C1041V33 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.
Writing to the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable $(\overline{\mathrm{BLE}})$ is LOW, then data from I/O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$, is
written into the location specified on the address pins (A_{0} through A_{17}). If Byte High Enable ($\left.\overline{\mathrm{BHE}}\right)$ is LOW, then data from I/O pins ($\mathrm{I} / \mathrm{O}_{8}$ through $\mathrm{I} / \mathrm{O}_{15}$) is written into the location specified on the address pins (A_{0} through A_{17}).
Reading from the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{\mathrm{OE} \text {) LOW while forcing the }}$ Write Enable ($\overline{\mathrm{WE}}$) HIGH. If Byte Low Enable ($\overline{\mathrm{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$. If Byte High Enable ($\overline{\mathrm{BHE}}$) is LOW, then data from memory will appear on $\mathrm{I} / \mathrm{O}_{8}$ to $\mathrm{I} / \mathrm{O}_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.
The input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$) are placed in a high-impedance state when the device is deselected $\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), the BHE and BLE are disabled ($\overline{\mathrm{BHE}}, \overline{\mathrm{BLE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}$ LOW, and WE LOW).
The CY7C1041V33 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Selection Guide

		1041V33-12	1041V33-15	1041V33-17	1041V33-20	1041V33-25
Maximum Access Time (ns)	12	15	17	20	25	
Maximum Operating Current (mA)	190	170	160	150	130	
Maximum CMOS Standby Current (mA)	Com'l/Ind'I	8	8	8	8	8
	Com'l	L	0.5	0.5	0.5	0.5

Shaded areas contain preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied. \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} \ldots . .0 .5 \mathrm{~V}$ to +4.6 V DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			7C1041-12V33		7C1041V33-15		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$			2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$				0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.5 \end{aligned}$	2.2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.5 \end{aligned}$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$			-1	+1	-1	+1	$\mu \mathrm{A}$
l_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-1	+1	-1	+1	$\mu \mathrm{A}$
I_{Cc}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}$				190		170	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} & \text { Max. } V_{\text {CC }}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, f=f_{\mathrm{MAX}} \end{aligned}$				40		40	mA
ISB2	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & C E \geq V_{C C}-0.3 V \\ & V_{I N} \geq V_{C C}-0.3 V \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$	Com'//Ind'I			8		8	mA
			Com'l	L		0.5		0.5	mA

[^0]Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions			1041V33-17		1041V33-20		1041V33-25		Unit
					Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=$	mA		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8$.				0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.5 \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.5 \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.5 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	-0.5	0.8	V
IIX	Input Load Current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {CC }}$			-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled			-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & V_{C C}=\text { Max. }, \\ & f=f_{M A X}=1 / t_{R C} \end{aligned}$				160		150		130	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, f=\mathrm{f}_{\mathrm{MAX}} \\ & \hline \end{aligned}$				40		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \overline{C E} \geq V_{C C}-0.3 V \\ & V_{I N} \geq V_{C C}-0.3 V, \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$	Com'//Ind'I			8		8		8	mA
			Com'l	L		0.5		0.5		0.5	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	8	pF
$\mathrm{C}_{\mathrm{OUT}}$			8	pF

Note:
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics ${ }^{[4]}$ Over the Operating Range

Parameter	Description	1041V33-12		1041V33-15		1041V33-17		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		17		ns
t_{AA}	Address to Data Valid		12		15		17	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		12		15		17	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		6		7		8	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE }}$ HIGH to High $Z^{[5,6]}$		6		7		7	ns
tlzCe	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		6		7		7	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		17	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		6		7		7	ns
$t_{\text {LZBE }}$	Byte Enable to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZBE }}$	Byte Disable to High Z		6		7		8	ns

WRITE CYCLE ${ }^{[7,8]}$

twc	Write Cycle Time	12		15		17		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	10		12		12		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		12		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		12		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		9		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$		6		7		8	ns
$t_{\text {b }}$ W	Byte Enable to End of Write	10		12		12		ns

Shaded areas contain preliminary information.

Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{O}} / \mathrm{l}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
7. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
8. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of $t_{H Z W E}$ and t_{SD}.

Switching Characteristics ${ }^{[4]}$ Over the Operating Range (continued)

Parameter	Description	1041V33-20		1041V33-25		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	20		25		ns
t_{AA}	Address to Data Valid		20		25	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8		10	ns
t LZOE	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		ns
$t_{\text {troe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		8		10	ns
tlzCe	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		8		10	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		20		25	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		8		10	ns
t LZBE	Byte Enable to Low Z	0		0		ns
$t_{\text {HZBE }}$	Byte Disable to High Z		8		10	ns
WRITE CYCLE ${ }^{[7,8]}$						
t_{wc}	Write Cycle Time	20		25		ns
$t_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	13		15		ns
t_{AW}	Address Set-Up to Write End	13		15		ns
t_{HA}	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	13		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	9		10		ns
t_{HD}	Data Hold from Write End	0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$		8		10	ns
$\mathrm{t}_{\text {BW }}$	Byte Enable to End of Write	13		15		ns

Data Retention Characteristics Over the Operating Range (For L version only)

Parameter	Description	Conditions ${ }^{[10]}$	Min.	Max.	Unit
V_{DR}	$\mathrm{V}_{\text {CC }}$ for Data Retention		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		330	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[3]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[9]}$	Operation Recovery Time		t_{RC}		ns

Notes:
9. $\mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}} \leq 5 \mathrm{~ns}$ for the -20 and slower speeds.
10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[12,13]}$

Notes:

11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BHE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{W E}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[14,15]}$

Write Cycle No. 2 (BLE or BHE Controlled)

Notes:

14. Data I / O is high impedance if OE or BHE and/or $\mathrm{BLE}=\mathrm{V}_{\mathrm{IH}}$
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 3 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{LEF}} \mathrm{N}$)

Truth Table

$\overline{C E}$	$\overline{\mathrm{OE}}$	WE	BLE	BHE	$\mathrm{I} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$	$\mathrm{l} / \mathrm{O}_{8}-\mathrm{l} / \mathrm{O}_{15}$	Mode	Power
H	X	X	X	X	High Z	High Z	Power Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	L	L	Data Out	Data Out	Read All Bits	Active (I_{CC})
L	L	H	L	H	Data Out	High Z	Read Lower Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	L	H	H	L	High Z	Data Out	Read Upper Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	X	L	L	L	Data In	Data In	Write All Bits	Active (I_{CC})
L	X	L	L	H	Data In	High Z	Write Lower Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	X	L	H	L	High Z	Data In	Write Upper Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	H	H	X	X	High Z	High Z	Selected, Outputs Disabled	Active ($\mathrm{ICC}^{\text {) }}$

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1041V33-12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1041V33L-12VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33-12ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-12ZC	Z44	44-Pin TSOP II Z44	
15	CY7C1041V33-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33-15ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-15ZC	Z44	44-Pin TSOP II Z44	
17	CY7C1041V33-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33-17ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-17ZC	Z44	44-Pin TSOP II Z44	
20	CY7C1041V33-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33-20ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-20ZC	Z44	44-Pin TSOP II Z44	
25	CY7C1041V33-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33-25ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-25ZC	Z44	44-Pin TSOP II Z44	

Package Diagrams

44-Lead (400-Mil) Molded SOJ V34

44-Pin TSOP II Z44

TDP VIEW

BDTTAM VIEW

51-85087-A

Document Title: CY7C1041V33 256K x 16 Static RAM Document Number: 38-05069				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
$* *$	107262	$09 / 15 / 01$	SZV	Change from Spec number: $38-00645$ to 38-05069

[^0]: Shaded areas contain preliminary information.
 Notes:

 1. $\quad \mathrm{V}_{\mathrm{IL}}($ min. $)=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
 2. T_{A} is the "Instant On" case temperature.
