

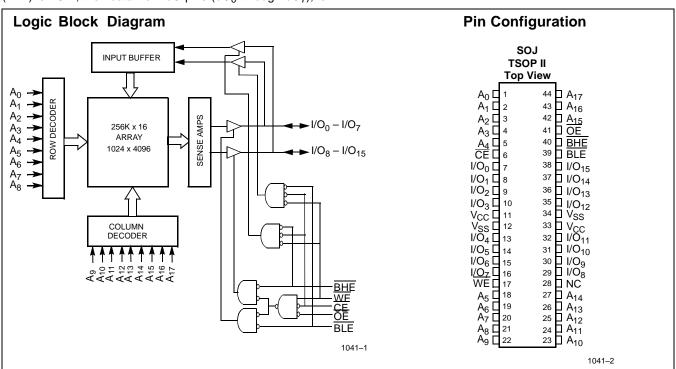
256K x 16 Static RAM

Features

- · High speed
 - $-t_{AA} = 15 \text{ ns}$
- · Low active power
 - —1430 mW (max.)
- Low CMOS standby power (L version)
 - -2.75 mW (max.)
- 2.0V Data Retention (400 μW at 2.0V retention)
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description

The CY7C1041 is a high-performance CMOS static RAM organized as 262,144 words by 16 bits.


Writing to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is

written into the location specified on the address pins (A_0 through A_{17}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{17}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1041 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Selection Guide

		7C1041-12	7C1041-15	7C1041-17	7C1041-20	7C1041-25
Maximum Access Time (ns)		12	15	17	20	25
Maximum Operating Current (mA)	280	260	250	230	220	
Maximum CMOS Standby Current	Com'l	3	3	3	3	3
(mA)	Com'l L	0.5	0.5	0.5	0.5	0.5
	Ind'I	6	6	6	6	6

Shaded areas contain preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}....-0.5V$ to +7.0V DC Voltage Applied to Outputs in High Z State^[1].....-0.5V to V_{CC} + 0.5V

DC Input Voltage ^[1]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	$5V \pm 0.5$
Industrial	-40°C to +85°C	

Electrical Characteristics Over the Operating Range

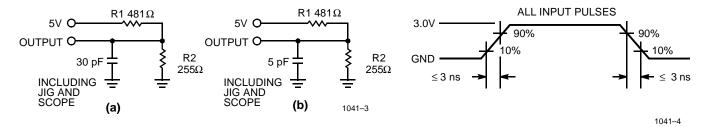
				7C10)41-12	7C10)41-15	7C1041-17		
Parameter	Description	Test Condit	Test Conditions			Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4$.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$) mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V	
V _{IL}	Input LOW Voltage[1]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	-1	+1	-1	+1	-1	+1	μΑ	
I _{cc}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$					260		250	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$ \begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned} $		40		40		40	mA	
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		3		3		3	mA
	Power-Down Current —CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		0.5		0.5		0.5	mA
		or $V_{IN} \le 0.3V$, $f = 0$	Ind'I		6		6		6	mA

Shaded areas contain preliminary information.

Notes:

^{1.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the case temperature.

Electrical Characteristics Over the Operating Range (continued)


		Test Conditi	ons	7C1	1041-20	7C1041-25		
Parameter	Description			Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$	$V_{\rm CC}$ = Min., $I_{\rm OH}$ = -4.0 mA			2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$	V _{CC} = Min., I _{OL} = 8.0 mA				0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V	
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$		-1	+1	-1	+1	μΑ
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$			230		220	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$			40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		3		3	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$	Com'l L		0.5		0.5	mΑ
	Owoo mputs	or $V_{IN} \le V_{CC} = 0.3V$, $f = 0$	Ind'I		6		6	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

Note:

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

167Ω

0.179\text{173}

^{3.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		7C10	41-12	7C10	41-15	7C1041-17		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE						ı	<u>.I</u>
t _{RC}	Read Cycle Time	12		15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
t _{DBE}	Byte Enable to Data Valid		6		7		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns
t _{HZBE}	Byte Disable to High Z		6		7		7	ns
WRITE CYC	CLE ^[7, 8]	<u> </u>		•	•	•	•	
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		14		ns
t _{AW}	Address Set-Up to Write End	10		12		14		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		14		ns
t _{SD}	Data Set-Up to Write End			8		8		ns
t _{HD}	Data Hold from Write End			0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		6		7		7	ns
t _{BW}	Byte Enable to End of Write	10		12		12		ns

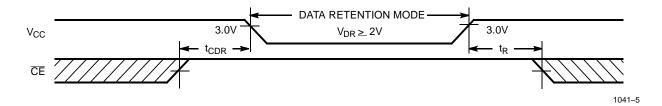
Shaded areas contain preliminary information.

Notes:

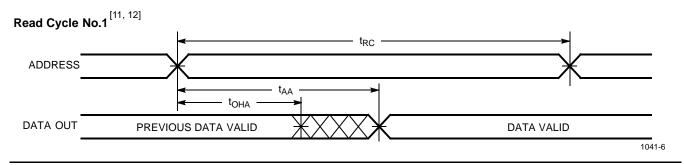
Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.
 t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{HZOE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

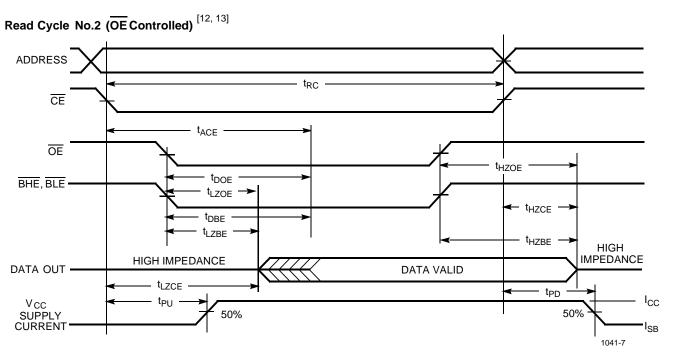
$\textbf{Switching Characteristics}^{[4]} \ \, \text{Over the Operating Range (continued)}$

		7C10	41-20	7C10		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCI	E			•	•	
t _{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address to Data Valid		20		25	ns
t _{OHA}	Data Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		20		25	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		8		10	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		25	ns
t _{DBE}	Byte Enable to Data Valid		8		10	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		8		10	ns
WRITE CYC	LE ^[7, 8]			•	•	
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	13		15		ns
t _{AW}	Address Set-Up to Write End	13		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	13		15		ns
t _{SD}	Data Set-Up to Write End	9		10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		5		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		8		10	ns
t _{BW}	Byte Enable to End of Write	13		15		ns


Data Retention Characteristics Over the Operating Range

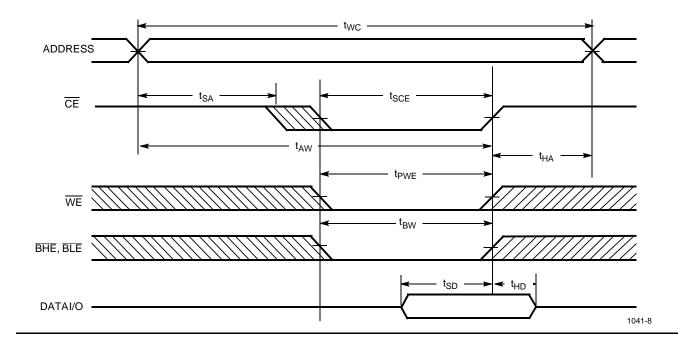
Parameter	Description		Conditions ^[10]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current		$\frac{V_{CC}}{QE} = V_{DR} = 2.0V,$			μΑ
		Com'l L	$\begin{split} & \underline{V_{CC}} = V_{DR} = 2.0V, \\ & CE \ge V_{CC} - 0.3V, \\ & V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V \end{split}$		200	μΑ
						μΑ
CDR ^[3]	Chip Deselect to Data Ret	tention Time		0		ns
t _R ^[9]	Operation Recovery Time				See Note 9	


t_r ≤ 100 μs for all speeds.
 No input may exceed V_{CC} + 0.5V.

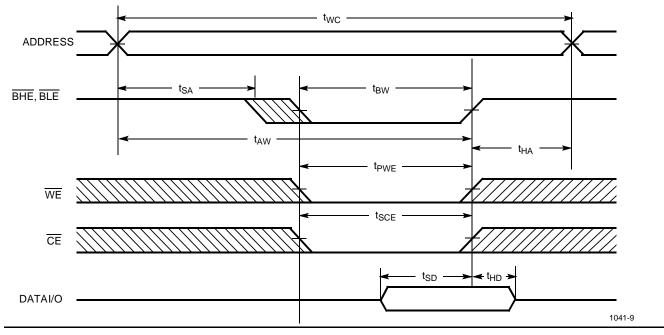


Data Retention Waveform

Switching Waveforms



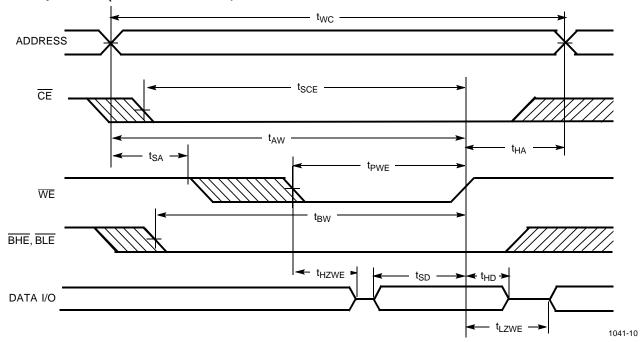
- Device is continuously selected. OE, CE, BHE, and/or BHE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) $^{[14,\ 15]}$

Write Cycle No. 2 (BLE or BHE Controlled)



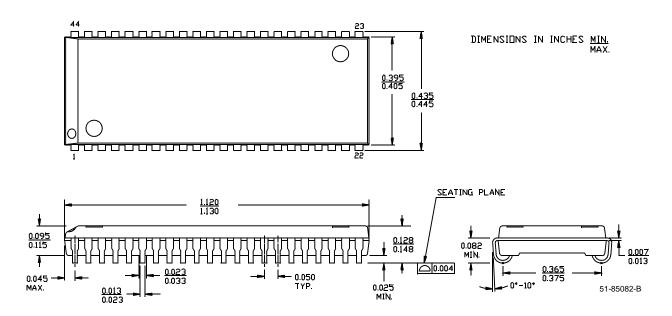
^{14.} Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.
15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

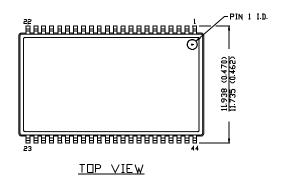
Write Cycle No.3 (WE Controlled, LOW)

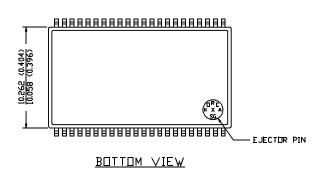
Truth Table

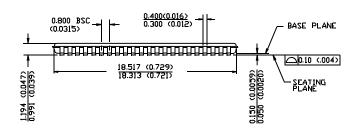
CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Χ	Χ	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower Bits Only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower Bits Only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Χ	Χ	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

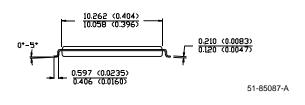

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1041-15VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1041L-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041-15ZC	Z44	44-Lead TSOP Type II	
	CY7C1041L-15ZC	Z44	44-Lead TSOP Type II	
17	CY7C1041-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041L-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041-17ZC	Z44	44-Lead TSOP Type II	
	CY7C1041L-17ZC	Z44	44-Lead TSOP Type II	
20	CY7C1041-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041L-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041-20ZC	Z44	44-Lead TSOP Type II	
	CY7C1041L-20ZC	Z44	44-Lead TSOP Type II	
25	CY7C1041-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041L-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041-25ZC	Z44	44-Lead TSOP Type II	
	CY7C1041L-25ZC	Z44	44-Lead TSOP Type II	
15	CY7C1041-15ZI	Z44	44-Lead TSOP Type II	Industrial
	CY7C1041-15VI	V34	44-Lead (400-Mil) Molded SOJ	
17	CY7C1041-17ZI	V34	44-Lead TSOP Type II	
	CY7C1041-17VI	Z44	44-Lead (400-Mil) Molded SOJ	
20	CY7C1041-20ZI	Z44	44-Lead TSOP Type II	
	CY7C1041-20VI	Z44	44-Lead (400-Mil) Molded SOJ	
25	CY7C1041-25ZI	Z44	44-Lead TSOP Type II	
	CY7C1041-25VI	Z44	44-Lead (400-Mil) Molded SOJ	


Package Diagrams


44-Lead (400-Mil) Molded SOJ V34




44-Pin TSOP II Z44

D[MENS]_IN MM (INCH) MAX MIN.

Document Title: CY7C1041 256K x 16 Static RAM Document Number: 38-05068						
REV.	REV. Issue Orig. of Change Description of Change					
**	107261 09/10/01 SZV Change from Spec number: 38-00644 to 38-05068					