
MECHANICALLY VARIABLE DELAY LINE SERIES 1509 & 1509J)

FEATURES PACKAGES

GND

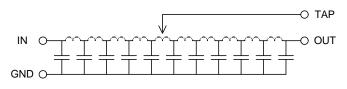
- Ideal for "Set and Forget" applications
- Multi-turn adjustment screw (1509: 20 turns, 1509J: 60 turns)
- Stackable for PC board economy
- Fits standard 14-pin DIP socket (1509)
- 20mil x 10mil flat leads (1509)
- #20 gauge leads (1509J)
- Resolution: As low as 0.15ns
- Dielectric breakdown: 50 Vdc 200 PPM/°C Temperature coefficient:

TAP

1509-xxz 1509J-xxz

> $xx = Max Delay (T_D)$ z = Impedance Code

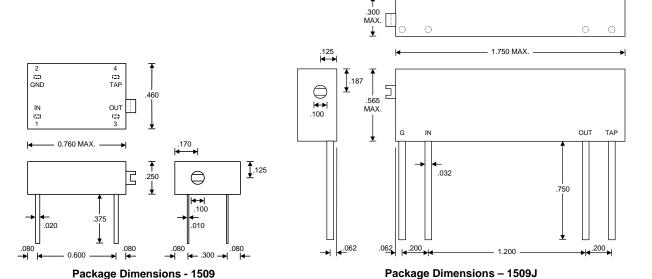
FUNCTIONAL DESCRIPTION


The 1509- and 1509J-series devices are mechanically variable, passive delay lines. The signal input (IN) is reproduced at the tap output (TAP), shifted by an amount which can be adjusted between 0 and T_D , where T_D is the device dash number. The fixed output (OUT) reproduces the input, delayed by T_D, and must be terminated to match the characteristic impedance of the line, which is given

IN Signal Input TAP Variable Output OUT Fixed Output **GND** Ground

PIN DESCRIPTIONS

by the letter code that follows the dash number (See Table). The tap output is unbuffered. The 3dB bandwidth of the line is given by 3.5 / T_R, where T_R is the rise time of the line (See Table).


SERIES SPECIFICATIONS

Functional Diagram

DASH NUMBER SPECIFICATIONS

Part	Max Dly	TR	Imped	RDC
Number	(ns)	(ns)	(Ω)	(Ω)
1509-05B	5	3	100	0.4
1509-20C	20	8	200	1.0
1509-20D	20	8	250	1.0
1509J-10B	10	4	100	0.8
1503J-40C	40	9	200	1.5

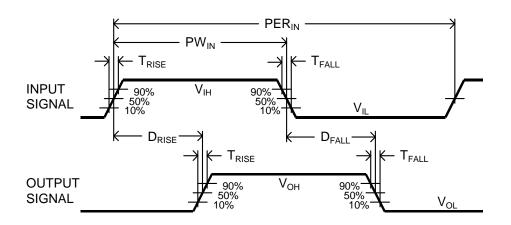
©2001 Data Delay Devices

PASSIVE DELAY LINE TEST SPECIFICATIONS

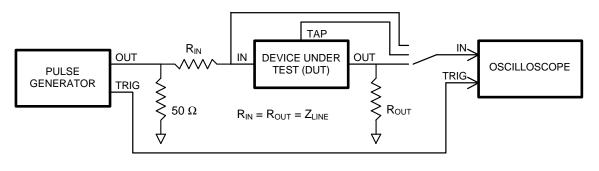
TEST CONDITIONS

INPUT: OUTPUT:

 $25^{\circ}C \pm 3^{\circ}C$ **Ambient Temperature:** R_{load}: $10 M\Omega$ Input Pulse: High = 3.0V typical C_{load}: 10pf


Low = 0.0V typicalThreshold: 50% (Rising & Falling)

Source Impedance: 50Ω Max.


Rise/Fall Time: 3.0 ns Max. (measured at 10% and 90% levels)

Pulse Width ($T_D \le 75$ ns): $PW_{IN} = 100$ ns $(T_D \le 75ns)$: PER_{IN} = 1000ns Period Pulse Width $(T_D > 75ns)$: $PW_{IN} = 2 \times T_D$ $PER_{IN} = 10 \times T_D$ Period $(T_D > 75ns)$:

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup