

MBR3030PT - MBR3060PT

30A SCHOTTKY BARRIER RECTIFIER

Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- Low Power Loss, High Efficiency
- High Surge Capability
- High Current Capability and Low Forward Voltage Drop
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications
- Plastic Material: UL Flammability Classification Rating 94V-0

$\begin{array}{c c} & & & & \\ & & & \\ \hline & & & \\ \hline & & \\ S & & \\ \hline & & \\ & & \\ \hline & & \\ & &$	→
 < 	

TO-3P						
Dim	Min	Max				
Α	3.20	3.50				
В	4.59	5.16				
С	20.80	21.30				
D	19.70	20.20				
E	2.10	2.40				
G	0.51	0.76				
Н	15.90	16.40				
J	1.70	2.70				
K	3.10∅	3.30∅				
L	3.50	4.51				
М	5.20	5.70				
N	1.12	1.22				
Р	1.93	2.18				
Q	2.97	3.22				
R	11.70	12.80				
S	4.30 Typical					
All Dimensions in mm						

Mechanical Data

Case: Molded Plastic

 Terminals: Plated Leads Solderable per MIL-STD-202, Method 208

Polarity: As Marked on Body

Marking: Type Number

Weight: 5.6 grams (approx.)

Mounting Position: Any

Maximum Ratings and Electrical Characteristics @ T_A = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	MBR 3030PT	MBR 3035PT	MBR 3040PT	MBR 3045PT	MBR 3050PT	MBR 3060PT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	35	40	45	50	60	V
RMS Reverse Voltage	V _{R(RMS)}	21	24.5	28	31.5	35	42	V
Average Rectified Output Current @ T _C = 125°C (Note 1)	lo	30					Α	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM}	200					Α	
Forward Voltage Drop @ $I_F = 20A$, $T_C = 25^{\circ}C$ per element (Note 3) @ $I_F = 20A$, $T_C = 125^{\circ}C$	V _{FM}	0.65 0.75 0.60 0.65						V
Peak Reverse Current @ $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage, per element @ $T_C = 125^{\circ}C$	I _{RM}	1.0 5.0 60 100				mA		
Typical Junction Capacitance (Note 2)	Cj	700					pF	
Typical Thermal Resistance Junction to Case (Note 1)	R _{θJc}		1	.4		2	.0	K/W
Voltage Rate of Change (Rated V _R)	dV/dt	//dt 10,000			V/µs			
Operating and Storage Temperature Range T _{j,} T _{STG}		-65 to +150					°C	

Notes:

- 1. Thermal resistance junction to case mounted on heatsink.
- 2. Measured at 1.0MHz and applied reverse voltage of 4.0V DC.
- 3. Pulse width \leq 300 μ s, duty cycle \leq 2%.

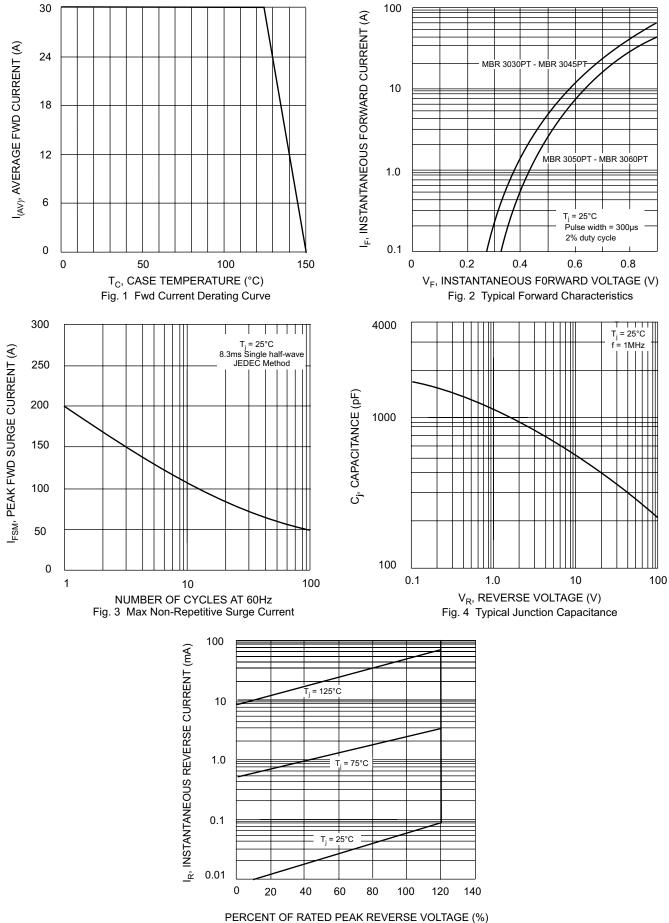


Fig. 5 Typical Reverse Characteristics