

Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.
© 2001 Elantec Semiconductor, Inc.

С.ıви!ш!!., - OS8ISTA
 Absolute Maximum Ratings ${\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)}$
 Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. Analog Supply Voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}\right.$to $\left.\mathrm{V}_{\mathrm{S}^{-}}\right)$ Digital Supply Voltage (V_{SD} to GND) Differential Input Voltage Common-mode Input Voltage
 Important Note
 All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$.

Electrical Characteristics

$V_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Description	Condition	Min	Typ	Max	Unit
Vos	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		2	4	mV
I_{B}	Input Bias Current			8	15	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			5		pF
I_{OS}	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		100	500	nA
V_{CM}	Input Voltage Range		(VS-) - 0.1		$\left(\mathrm{V}^{+}\right.$) $-2 \mathrm{~V}$	V
Avo	Large Signal Voltage Gain			5000		V/V
CMRR	Common-mode Rejection Ratio	$-5 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		80		dB
PSRR	Power Supply Rejection Ratio			60		dB
V OH	Output High Voltage	$\mathrm{V}_{\text {IN }}>250 \mathrm{mV}$	$\mathrm{V}_{\text {SD }}-0.5 \mathrm{~V}$	$\mathrm{V}_{\text {SD }}-0.4 \mathrm{~V}$		V
VOL	Output Low Voltage	$\mathrm{V}_{\text {IN }}>250 \mathrm{mV}$		GND + 0.4V	GND + 0.5V	V
$\mathrm{V}_{\text {LH }}$	Latch Input Voltage High				2.0	V
$\mathrm{V}_{\text {LL }}$	Latch Input Voltage Low		0.8			V
$\mathrm{I}_{\text {LH }}$	Latch Input Current High	$\mathrm{V}_{\mathrm{LH}}=3.0 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	Latch Input Current Low	$\mathrm{V}_{\mathrm{LL}}=0.3 \mathrm{~V}$		40	80	$\mu \mathrm{A}$
I^{+}	Positive Analog Supply Current			10.5		mA
IS-	Negative Analog Supply Current			7.5		mA
I_{DD}	Digital Supply Current			6		mA
$\mathrm{t}_{\mathrm{d}}{ }^{+}$	Positive Going Delay Time	$\mathrm{V}_{\mathrm{OD}}=5 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$		4	6	ns
$\mathrm{t}_{\mathrm{d}}{ }^{-}$	Negative Going Delay Time	$\mathrm{V}_{\mathrm{OD}}=5 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$		4	6	ns
$\mathrm{t}_{\mathrm{pd}}{ }^{+}$	Latch Disable to High Delay			6		ns
$\mathrm{t}_{\mathrm{pd}}{ }^{-}$	Latch Disable to Low Delay			8		ns
t_{s}	Minimum Setup Time			2		ns
th_{h}	Minimum Hold Time			1		ns
$\mathrm{t}_{\mathrm{pw}}(\mathrm{D})$	Minimum Latch Disable Pulse Width			5		ns

EL5185C - Preliminary

Typical Performance Curves

Output High Voltage vs Temperature

Input Bias Current vs Temperature

EL5185C - Preliminary

EL5185C - Preliminary
 4ns High-Speed Comparator

Typical Performance Curves

Propagation Delay vs Supply Voltage

EL5185C - Preliminary

Typical Performance Curves

EL5185C - Preliminary

4ns High-Speed Comparator

Applications Information

Power Supplies and Circuit Layout

The EL5185C comparator operates with single and dual supply with 5 V to 12 V between $\mathrm{V}_{\mathrm{S}^{+}}$and V_{S}. The output side of the comparator is supplied by a single supply from 2.7 V to 5 V . The rail to rail output swing enables direct connection of the comparator to both CMOS and TTL logic circuits. As with many high speed devices, the supplies must be well bypassed. Elantec recommends a $4.7 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic. These should be placed as close as possible to the supply pins. Keep all leads short to reduce stray capacitance and lead inductance. This will also minimize unwanted parasitic feedback around the comparator. The device should be soldered directly to the PC board instead of using a socket. Use a PC board with a good, unbroken low inductance ground plane. Good ground plane construction techniques enhance stability of the comparators.

Input Voltage Considerations

The EL5185C input range is specified from 0.1 V below $\mathrm{V}_{\mathrm{S}}-$ to 2.25 V below $\mathrm{V}_{\mathrm{S}^{+}}$. The criterion for the input limit is that the output still responds correctly to a small differential input signal. The differential input stage is a pair of PNP transistors, therefore, the input bias current flows out of the device. When either input signal falls below the negative input voltage limit, the parasitic PN junction formed by the substrate and the base of the PNP will turn on, resulting in a significant increase of input bias current. If one of the inputs goes above the positive input voltage limit, the output will still maintain the correct logic level as long as the other input stays within the input range. However, the propagation delay will increase. When both inputs are outside the input voltage range, the output becomes unpredictable. Large differential voltages greater than the supply voltage should be avoided to prevent damages to the input stage.

Input Slew Rate

Most high speed comparators oscillate when the voltage of one of the inputs is close to or equal to the voltage on the other input due to noise or undesirable feedback. For clean output waveform, the input must meet certain minimum slew rate requirements. In some applications, it
may be helpful to apply some positive feedback (hysteresis) between the output and the positive input. The hysteresis effectively causes one comparator's input voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs. For the EL5185C, the propagation delay increases when the input slew rate increases for low overdrive voltages. With high overdrive voltages, the propagation delay does not change much with the input slew rate.

Latch Pin Dynamics

The EL5185C contains a "transparent" latch for each channel. The latch pin is designed to be driven with either a TTL or CMOS output. When the latch is connected to a logic high level or left floating, the comparator is transparent and immediately responds to the changes at the input terminals. When the latch is switched to a logic low level, the comparator output remains latched to its value just before the latch's high-to-low transition. To guarantee data retention, the input signal must remain the same state at least 1 ns (hold time) after the latch goes low and at least 2 ns (setup time) before the latch goes low. When the latch goes high, the new data will appear at the output in approximately 6 ns (latch propagation delay).

Hysteresis

Hysteresis can be added externally. The following two methods can be used to add hysteresis.
Inverting comparator with hysteresis:

R_{3} adds a portion of the output to the threshold set by R_{1} and R_{2}. The calculation of the resistor values are as follows:

Select the threshold voltage $\mathrm{V}_{\text {TH }}$ and calculate R_{1} and R_{2}. The current through $\mathrm{R}_{1} / \mathrm{R}_{2}$ bias string must be many

EL5185C - Preliminary 4ns High-Speed Comparator

times greater than the input bias current of the comparator:

$$
\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{REF}} \times \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Let the hysteresis be V_{H}, and calculate R_{3} :

$$
\mathrm{R}_{3}=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{H}}} \times\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right)
$$

where:
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SD}^{-}}-0.8 \mathrm{~V}$ (swing of the output)
Recalculate R_{2} to maintain the same value of V_{TH} :

$$
\mathrm{R}_{2} 1=\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{TH}}\right) \div\left(\frac{\mathrm{v}_{\mathrm{TH}}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{\mathrm{TH}}-0.5 \mathrm{~V}_{\mathrm{SD}}}{\mathrm{R}_{3}}\right)
$$

Non inverting comparator with hysteresis:

R_{3} adds a portion of the output to the positive input. Note that the current through R_{3} should be much greater than the input bias current in order to minimize errors. The calculation of the resistor values as follows:

Pick the value of $\mathrm{R}_{1} . \mathrm{R}_{1}$ should be small (less than $1 \mathrm{k} \Omega$) in order to minimize the propagation delay time.
Choose the hysteresis V_{H} and calculate R_{3} :

$$
\mathrm{R}_{3}=\left(\mathrm{V}_{\mathrm{SD}^{-0.8}}\right) \times \frac{\mathrm{R}_{1}}{\mathrm{~V}_{\mathrm{H}}}
$$

Check the current through R_{3} and make sure that it is much greater than the input bias current as follows:

$$
\mathrm{I}=\frac{0.5 \mathrm{~V}_{\mathrm{SD}}-\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}_{3}}
$$

The above two methods will generate hysteresis of up to a few hundred millivolts. Beyond that, the impedance of R_{3} is low enough to affect the bias string and adjustment of R_{1} may be required.

Power Dissipation

When switching at high speeds, the comparator's drive capability is limited by the rise in junction temperature caused by the internal power dissipation. For reliable operation, the junction temperature must be kept below $\mathrm{T}_{\text {JMAX }}\left(125^{\circ} \mathrm{C}\right)$.

An approximate equation for the device power dissipation is as follows. Assume the power dissipation in the load is very small:

$$
\mathrm{P}_{\mathrm{DISS}}=\left(\mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{S}}+\mathrm{V}_{\mathrm{SD}} \times \mathrm{I}_{\mathrm{SD}}\right)
$$

where:
V_{S} is the analog supply voltage from $\mathrm{V}_{\mathrm{S}}+$ to $\mathrm{V}_{\mathrm{S}}{ }^{-}$
I_{S} is the analog quiescent supply current per comparator
V_{SD} is the digital supply voltage from V_{SD} to ground
I_{SD} is the digital supply current per comparator
ISD strongly depends on the input switching frequency. Please refer to the performance curve to choose the input driving frequency. Having obtained the power dissipation, the maximum junction temperature can be determined as follows:

$$
\mathrm{T}_{\mathrm{JMAX}}=\mathrm{T}_{\mathrm{MAX}}+\Theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{DISS}}
$$

where:
$\mathrm{T}_{\text {MAX }}$ is the maximum ambient temperature
θ_{JA} is the thermal resistance of the package

Threshold Detector

The inverting input is connected to a reference voltage and the non-inverting input is connected to the input. As the input passes the $\mathrm{V}_{\text {REF }}$ threshold, the comparator's

[^0]

General Disclaimer

Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Elantec Semiconductor, Inc.

675 Trade Zone Blvd.
Milpitas, CA 95035
Telephone: (408) 945-1323
(888) ELANTEC

Fax: (408) 945-9305
European
European Office: +44-118-977-6020
Japan Technical Center: +81-45-682-5820

WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms \& conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.

[^0]: EL5185C - Preliminary
 4ns High-Speed Comparator
 output changes state. The non-inverting and inverting inputs may be reversed.

 ## Crystal Oscillator

 A simple crystal oscillator using one comparator of an EL5185C is shown below. The resistors R_{1} and R_{2} set the bias point at the comparator's non-inverting input. Resistors $\mathrm{R}_{3}, \mathrm{R}_{4}$, and C_{1} set the inverting input node at an appropriate DC average voltage based on the output. The crystal's path provides resonant positive feedback and stable oscillation occurs. Although the EL5185C will give the correct logic output when an input is outside the common mode range, additional delays may occur when it is so operated. Therefore, the DC bias voltages at the inputs are set about 500 mV below the center of the common mode range and the 200Ω resistor attenuates the feedback to the non-inverting input. The circuit will operate with most AT-cut crystal from 1 MHz to 8 MHz over a 2 V to 7 V supply range. The output duty cycle for this circuit is roughly 50% at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$, but it is affected by the tolerances of the resistors. The duty cycle can be adjusted by changing $V_{C C}$ value.

