

EL2072C

### Features

- 730 MHz -3 dB bandwidth (0.5 V<sub>PP</sub>)
- + 5 ns settling to 0.2%
- $V_S = \pm 5V @ 15 mA$
- Low distortion: HD2, HD3 of -65 dBc at 20 MHz
- Overload/short-circuit protected
- Closed-loop, unity gain
- Low cost
- Direct replacement for CLC110

### Applications

- Video buffer
- Video distribution
- HDTV buffer
- High-speed A/D buffer
- Photodiode, CCD preamps
- IF processors
- High-speed communications

### **Ordering Information**

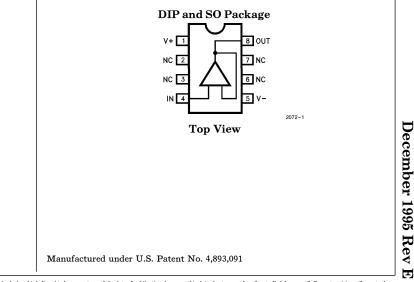
 Part No.
 Temp. Range
 Package
 Outline #

 EL2072CN
 -40°C to +85°C
 8-Pin P-DIP
 MDP0031

 EL2072CS
 -40°C to +85°C
 8-Pin SO
 MDP0037

## **General Description**

The EL2072 is a wide bandwidth, fast settling monolithic buffer built using an advanced complementary bipolar process. This buffer is closed loop to achieve lower output impedance and higher gain accuracy. Designed for closed-loop unity gain, the EL2072 has a 730 MHz -3 dB bandwidth and 5 ns settling to 0.2% while consuming only 15 mA of supply current.


The EL2072 is an obvious high-performance solution for video distribution and line-driving applications. With low 15 mA supply current and a 70 mA output drive, performance in these areas is assured.

The EL2072's settling to 0.2% in 5 ns, low distortion, and ability to drive capacitive loads make it an ideal flash A/D driver. The wide 730 MHz bandwidth and extremely linear phase allow unmatched signal fidelity.

The EL2072 can be used inside an amplifier loop or PLL as its wide bandwidth and fast rise time have minimal effect on loop dynamics.

Elantec products and facilities comply with MIL-I-45028A, and other applicable quality specifications. For information on Elantec's processing, see Elantec document *QRA-1: Elantec's Processing, Monolithic Integrated Circuits*.

# **Connection Diagram**



Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.

©1991 Elantec, Inc.

# Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

| Supply Voltage (V <sub>S</sub> )<br>Output Current<br>Input Voltage | ±7V<br>Output is short-circuit protect-<br>ed to ground, however, maxi-<br>mum reliability is obtained if<br>I <sub>OUT</sub> does not exceed 70 mA. | Operating Temperature<br>Junction Temperature<br>Storage Temperature<br>Thermal Resistance | $-40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $175^{\circ}\text{C}$ $-60^{\circ}\text{C to} + 150^{\circ}\text{C}$ $\theta_{\text{JA}} = 95^{\circ}\text{C/W P-DIP}$ $\theta_{\text{TA}} = 175^{\circ}\text{C/W SO}$ |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Important Note:

All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection. Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefore  $T_J = T_C = T_A$ .

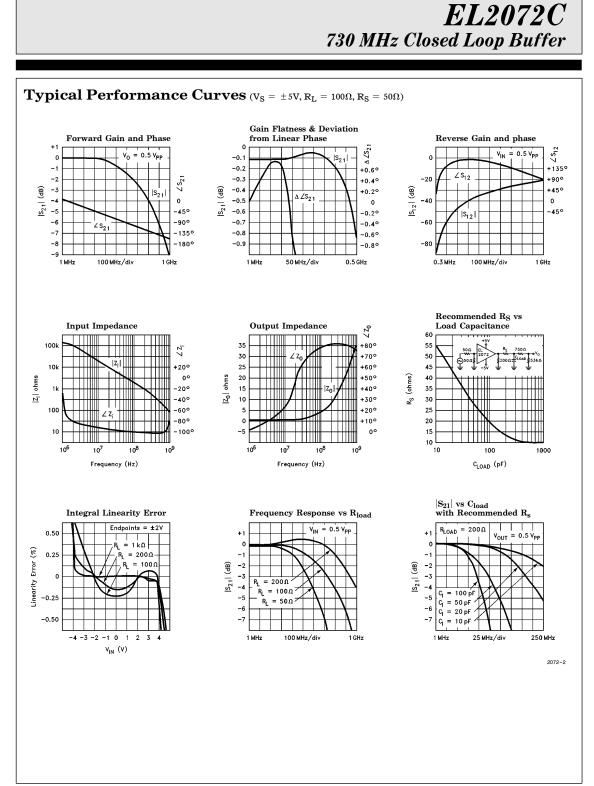
| Test Level | Test Procedure                                                                                                  |
|------------|-----------------------------------------------------------------------------------------------------------------|
| Ι          | 100% production tested and QA sample tested per QA test plan QCX0002.                                           |
| II         | 100% production tested at $T_{\rm A}=25^{\rm o}{\rm C}$ and QA sample tested at $T_{\rm A}=25^{\rm o}{\rm C}$ , |
|            | $T_{MAX}$ and $T_{MIN}$ per QA test plan QCX0002.                                                               |
| III        | QA sample tested per QA test plan QCX0002.                                                                      |
| IV         | Parameter is guaranteed (but not tested) by Design and Characterization Data.                                   |
| v          | Parameter is typical value at $T_A = 25^\circ$ C for information purposes only.                                 |

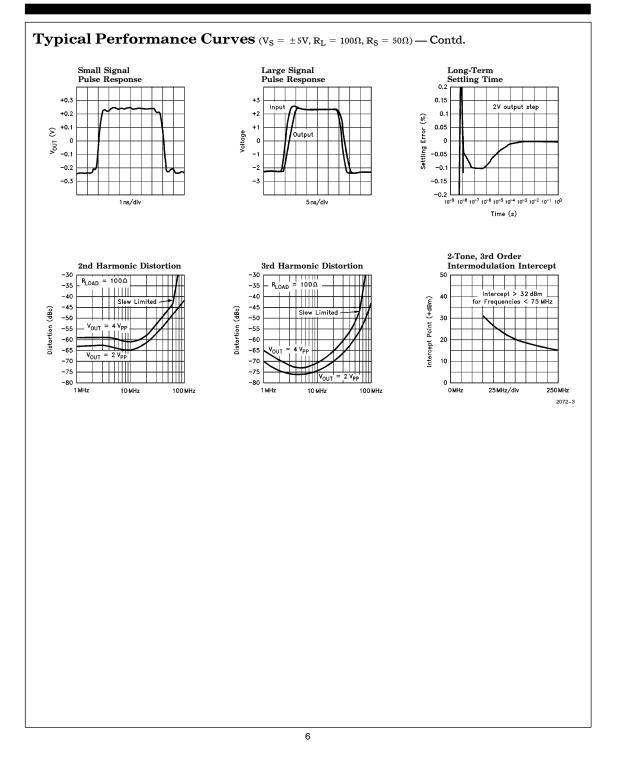
# **DC Electrical Characteristics**

 $V_{\rm S}=~\pm\,5V,$   $R_{\rm L}=~100\Omega,$   $R_{\rm S}=~50\Omega$  unless otherwise specified

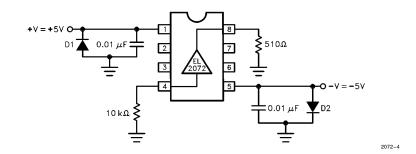
| Parameter       | Description                         | Test<br>Conditions  | Temp                                | Min  | Тур   | Max   | Test<br>Level | Units |
|-----------------|-------------------------------------|---------------------|-------------------------------------|------|-------|-------|---------------|-------|
| V <sub>OS</sub> | Output Offset Voltage               |                     | 25°C                                |      | 2.0   | 8.0   | I             | mV    |
|                 |                                     |                     | T <sub>MIN</sub>                    |      |       | 16.0  | v             | mV    |
|                 |                                     |                     | T <sub>MAX</sub>                    |      |       | 13.0  | v             | mV    |
| TCVOS           | Average Offset                      |                     | $25^{\circ}C - T_{MAX}$             |      | 20.0  | 50.0  | IV            | μV/°C |
|                 | Voltage Drift                       |                     | $25^{\circ}C - T_{MIN}$             |      | 20.0  | 100.0 |               | μ., ο |
| IB              | Input Bias Current                  |                     | 25°C, T <sub>MAX</sub>              |      | 10.0  | 50.0  | II            | μΑ    |
|                 |                                     |                     | T <sub>MIN</sub>                    |      |       | 100.0 | v             | μΑ    |
| TCIB            | Average Input Bias<br>Current Drift |                     | $25^{\circ}C - T_{MAX}$             |      | 200.0 | 300.0 | IV            | nA/°C |
|                 |                                     |                     | $25^{\circ}C - T_{MIN}$             |      | 200.0 | 700.0 |               |       |
| A <sub>V</sub>  | Small Signal Gain                   | $R_{L} = 100\Omega$ | 25°C                                | 0.96 | 0.98  |       | I             | V/V   |
|                 |                                     |                     | T <sub>MIN</sub> , T <sub>MAX</sub> | 0.95 |       |       | v             | V/V   |
| ILIN            | Integral End                        | $\pm 2V$ F.S.       | 25°C                                |      | 0.2   | 0.4   | IV            | %F.S. |
|                 | Point linearity                     |                     | T <sub>MIN</sub>                    |      |       | 0.8   | IV            | %F.S. |
|                 |                                     |                     | T <sub>MAX</sub>                    |      |       | 0.3   | IV            | %F.S. |
| PSRR            | Power Supply<br>Rejection Ratio     |                     | A11                                 | 45.0 | 65.0  |       | II            | dB    |
| IS              | Supply Current—Quiescent            | No Load             | All                                 |      | 15.0  | 20.0  | II            | mA    |

### **DC Electrical Characteristics**


 $V_S=~\pm5V,$   $R_L=100\Omega,$   $R_S=~50\Omega$  unless otherwise specified — Contd.


| Parameter        | Description           | Test<br>Conditions | Temp                                | Min   | Тур   | Max | Test<br>Level | Units         |
|------------------|-----------------------|--------------------|-------------------------------------|-------|-------|-----|---------------|---------------|
| R <sub>IN</sub>  | Input Resistance      |                    | 25°C                                | 100.0 | 160.0 |     | I             | kΩ            |
|                  |                       |                    | T <sub>MIN</sub>                    | 50.0  |       |     | v             | $k\Omega$     |
|                  |                       |                    | T <sub>MAX</sub>                    | 200.0 |       |     | v             | $k\Omega$     |
| $C_{\rm IN}$     | Input Capacitance     |                    | 25°C                                |       | 1.6   | 2.2 | IV            | $\mathbf{pF}$ |
|                  |                       |                    | $T_{MIN}, T_{MAX}$                  |       |       | 2.5 | IV            | $\mathbf{pF}$ |
| R <sub>OUT</sub> | Output Impedance (DC) |                    | 25°C                                |       | 2.0   | 3.0 | IV            | Ω             |
|                  |                       |                    | T <sub>MIN</sub> , T <sub>MAX</sub> |       |       | 3.5 | IV            | Ω             |
| I <sub>OUT</sub> | Output Current        |                    | 25°C, T <sub>MAX</sub>              | 50.0  | 70.0  |     | II            | mA            |
|                  |                       |                    | T <sub>MIN</sub>                    | 45.0  |       |     | v             | mA            |
| V <sub>OUT</sub> | Output Voltage Swing  | $R_L = 100\Omega$  | 25°C, T <sub>MAX</sub>              | ± 3.2 | ±4.0  |     | II            | v             |
|                  |                       |                    | T <sub>MIN</sub>                    | ± 3.0 |       |     | v             | v             |

# AC Electrical Characteristics $v_S = \pm 5V$ , $R_L = 100\Omega$ , $R_S = 50\Omega$ unless otherwise specified


| Parameter                                                                                                          | Description              | Test<br>Conditions | Temp                   | Min   | Тур   | Max | Test<br>Level | Units |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------|-------|-------|-----|---------------|-------|
| FREQUENCY                                                                                                          | RESPONSE                 |                    |                        |       |       |     |               | -     |
| SSBW                                                                                                               | -3 dB Bandwidth          |                    | 25°C                   | 400.0 | 730.0 |     | v             | MHz   |
|                                                                                                                    | $(V_{OUT} < 0.5 V_{PP})$ |                    | $T_{MIN}$              | 400.0 |       |     | IV            | MHz   |
|                                                                                                                    |                          |                    | T <sub>MAX</sub>       | 300.0 |       |     | IV            | MHz   |
| LSBW                                                                                                               | -3 dB Bandwidth          |                    | 25°C                   | 55.0  | 90.0  |     | IV            | MHz   |
|                                                                                                                    | $(V_{OUT} = 5.0 V_{PP})$ |                    | $T_{MIN}$ , $T_{MAX}$  | 50.0  |       |     | IV            | MHz   |
| GAIN FLATN                                                                                                         | ESS                      |                    |                        |       |       |     |               |       |
| $\begin{array}{ll} \mbox{GFPL} & \mbox{Peaking} \\ \mbox{V}_{\mbox{OUT}} < 0.5 \ \mbox{V}_{\mbox{PP}} \end{array}$ | U 0                      | <200 MHz           | 25°C                   |       | 0.0   | 0.5 | v             | dB    |
|                                                                                                                    |                          | T <sub>MAX</sub>   |                        |       | 0.6   | IV  | dB            |       |
|                                                                                                                    |                          |                    | T <sub>MIN</sub>       |       |       | 0.8 | IV            | dB    |
| GFR                                                                                                                | Rolloff                  | <200 MHz           | 25°C                   |       | 0.0   | 0.8 | v             | dB    |
| $V_{OUT} < 0.5 V_{PP}$                                                                                             | $V_{OUT} < 0.5 V_{PP}$   |                    | $T_{MIN}$              |       |       | 1.0 | IV            | dB    |
|                                                                                                                    |                          |                    | T <sub>MAX</sub>       |       |       | 1.2 | IV            | dB    |
| GDL                                                                                                                | Group Delay              | <200  MHz          | 25°C, T <sub>MIN</sub> |       | 0.75  | 1.0 | IV            | ns    |
|                                                                                                                    |                          |                    | T <sub>MAX</sub>       |       |       | 1.2 | IV            | ns    |
| LPD                                                                                                                | Linear Phase Deviation   | <200 MHz           | 25°C, T <sub>MIN</sub> |       | 0.7   | 1.5 | IV            | ٥     |
|                                                                                                                    | $V_{OUT} < 0.5 V_{PP}$   |                    | T <sub>MAX</sub>       |       |       | 2.0 | IV            | ٥     |

|           | $L = 100\Omega, R_S = 50\Omega$ unless otherw                  |                    | d.                                  |       |        |        |               |           |
|-----------|----------------------------------------------------------------|--------------------|-------------------------------------|-------|--------|--------|---------------|-----------|
| Parameter | Description                                                    | Test<br>Conditions | Temp                                | Min   | Тур    | Max    | Test<br>Level | Units     |
| TIME-DOMA | AIN RESPONSE                                                   |                    |                                     |       |        |        |               |           |
| TR1, TF1  | Rise Time, Fall Time                                           | 0.5V Step          | 25°C, T <sub>MIN</sub>              |       | 0.4    | 1.0    | IV            | ns        |
|           | Input Signal Rise/Fall = 300 ps                                |                    | T <sub>MAX</sub>                    |       |        | 1.4    | IV            | ns        |
| TR2, TF2  | Rise Time, Fall Time                                           | 5.0V Step          | 25°C                                |       | 4.5    | 7.5    | IV            | ns        |
|           | Input Signal Rise/Fall $\leq 1$ ns                             |                    | $T_{MIN}, T_{MAX}$                  |       |        | 8.5    | IV            | ns        |
| TS1       | Settling Time to $0.2\%$<br>Input Signal Rise/Fall $\leq 1$ ns | 2.0V Step          | All                                 |       | 5.0    | 10.0   | IV            | ns        |
| OS        | Overshoot                                                      | 0.5V Step          | 25°C                                |       | 0.0    | 10.0   | IV            | %         |
|           | Input Signal Rise/Fall = 300 ps                                |                    | T <sub>MIN</sub> , T <sub>MAX</sub> |       |        | 15.0   | IV            | %         |
| SR        | Slew Rate                                                      |                    | 25°C                                | 500.0 | 800.0  |        | IV            | V/µs      |
|           |                                                                |                    | $T_{MIN}, T_{MAX}$                  | 450.0 |        |        | IV            | V/µs      |
| DISTORTIO | N                                                              |                    |                                     |       |        |        |               |           |
| HD2       | 2nd Harmonic Distortion<br>at 20 MHz                           | 2 V <sub>PP</sub>  | 25°C                                |       | -55.0  | -50.0  | v             | dBc       |
|           |                                                                |                    | T <sub>MIN</sub>                    |       |        | -48.0  | IV            | dBc       |
|           |                                                                |                    | T <sub>MAX</sub>                    |       |        | -55.0  | IV            | dBc       |
| HD2A      | 2nd Harmonic Distortion<br>at 50 MHz                           | 2 V <sub>PP</sub>  | $25^{\circ}C$ , $T_{MAX}$           |       | -50.0  | -45.0  | IV            | dBc       |
|           |                                                                |                    | T <sub>MIN</sub>                    |       |        | -40.0  | IV            | dBc       |
| HD3       | 3rd Harmonic Distortion                                        | 2 V <sub>PP</sub>  | 25°C                                |       | -65.0  | -55.0  | v             | dBc       |
|           | at 20 MHz                                                      |                    | $T_{MIN}, T_{MAX}$                  |       |        | -55.0  | IV            | dBc       |
| HD3A      | 3rd Harmonic Distortion<br>at 50 MHz                           | $2 V_{\rm PP}$     | $25^{\circ}$ C, T <sub>MIN</sub>    |       | -60.0  | -50.0  | IV            | dBc       |
|           |                                                                |                    | T <sub>MAX</sub>                    |       |        | -45.0  | IV            | dBc       |
| EQUIVALEN | NT INPUT NOISE                                                 |                    |                                     |       |        |        |               |           |
| NF        | Noise Floor                                                    |                    | 25°C, T <sub>MIN</sub>              |       | -158.0 | -155.0 | IV            | dBm (1 Hz |
|           | $\geq$ 100 kHz                                                 |                    | T <sub>MAX</sub>                    |       |        | -154.0 | IV            | dBm (1 Hz |
| INV       | Integrated Noise                                               |                    | 25°C, T <sub>MIN</sub>              |       | 40.0   | 57.0   | IV            | μV        |
|           | 100 kHz to 200 MHz                                             |                    | T <sub>MAX</sub>                    |       |        | 63.0   | IV            | μV        |





# **Burn-In Circuit**



# **Printed Circuit Layout**

As with any high-frequency device, good PCB layout is necessary for optimum performance. This is especially important for the EL2072, which has a typical bandwidth of 730 MHz. Ground plane construction is a requirement, as is good power-supply bypassing close to the package. A closely-placed 0.01  $\mu$ F ceramic capacitor between each supply pin and the ground plane is usually sufficient decoupling.

Pins 2, 3, 6, and 7 should be connected to the ground-plane to minimize capacitive feed-through, and all input and output traces should be laid out as transmission lines and terminated as close to the EL2072 package as possible.

Increasing capacitance on the output of the EL2072 will add phase shift, decreasing phase margin and increasing frequency-response peaking. A small series resistor before the capacitance decouples this effect, and should be used for large capacitance values. Please refer to the graphs for the appropriate resistor value to be used.

#### General Disclaimer

Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.



### Elantec, Inc.

1996 Tarob Court Milpitas, CA 95035 Telephone: (408) 945-1323 (800) 333-6314 Fax: (408) 945-9305 European Office: 44-71-482-4596

#### WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms & conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.

December 1995 Rev E

Printed in U.S.A.