

October 1991 Revised November 1999

100310

Low Skew 2:8 Differential Clock Driver

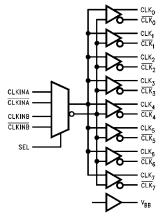
General Description

The 100310 is a low skew 8-bit differential clock driver which is designed to select between two separate differential clock inputs. The low output to output skew (< 50 ps) is maintained for either clo<u>ck input</u>. A LOW on the select pin (SEL) selects CLKINA, <u>CLKINA</u> and a HIGH on the SEL pin selects the CLKINB, <u>CLKINB</u> inputs.

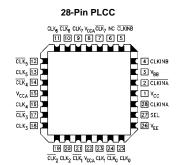
The 100310 is ideal for those applications that need the ability to freely select between two clocks, or to maintain the ability to switch to an alternate or backup clock should a problem arise with the primary clock source.

A $\ensuremath{\text{V}_{\text{BB}}}$ output is provided for single-ended operation.

Features


- Low output to output skew
- Differential inputs and outputs
- Allows multiplexing between two clock inputs
- Voltage compensated operating range: -4.2V to -5.7V
- Available to industrial grade temperature range (PLCC package only)

Ordering Code:


Order Number	Package Number	Package Description
100310QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100310QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
CLKIN _n , CLKIN _n	Differential Clock Inputs
SEL	Select
$CLK_{0-7}, \overline{CLK}_{0-8}$	Differential Clock Outputs
V_{BB}	V _{BB} Output No Connect
NC	No Connect

Truth Table

CLKINA	CLKINA	CLKINB	CLKINB	SEL	CLK _n	CLK _n
Н	L	Х	Х	L	Н	L
L	Н	X	X	L	L	Н
Х	X	Н	L	Н	Н	L
X	Χ	L	Н	Н	L	Η

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Case Temperature (T_C)

 $\begin{array}{lll} \mbox{Commercial} & 0^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \\ \mbox{Industrial} & -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \\ \mbox{Supply Voltage (V_{EE})} & -5.7\mbox{V to } -4.2\mbox{V} \\ \end{array}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2 V$ to $-5.7 V,~V_{CC} = V_{CCA} = GND,~T_{C} = 0 ^{\circ} C$ to $+85 ^{\circ} C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions				
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} = V _{IH} (Max)	Loading with			
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL} (Min)	50Ω to $-2.0V$			
V _{OHC}	Output HIGH Voltage	-1035			mV	V _{IN} = V _{IH} Loading with				
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL} (Max)	50Ω to −2.0V			
V _{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	$I_{VBB} = -250 \mu\text{A}$				
V_{DIFF}	Input Voltage Differential	150			mV	Required for Full Output Swing				
V _{CM}	Common Mode Voltage	V _{CC} - 2.0		V _{CC} - 0.5	V					
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs				
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Sig	nal for All Inputs			
I _{IL}	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL}$ (Min)				
I _{IH}	Input HIGH Current			240	μΑ	V _{IN} = V _{IH} (Max)				
I _{CBO}	Input Leakage Current	-10			μΑ	$V_{IN} = V_{EE}$				
I _{EE}	Power Supply Current	-100		-40	mA	Inputs Open				

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = 0°C			T	$T_C = +25^{\circ}C$			C = +85°	С	Units	Conditions
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Conditions
f _{MAX}	Max Toggle Frequency											
	CLKIN A/B to Q _n	750			750			750			MHz	
	SEL to Q _n	575			575			575			MHz	
t _{PLH}	Propagation Delay,											
t _{PHL}	CLKIN _n to CLK _n											
	Differential	0.80	0.90	1.00	0.82	0.92	1.02	0.89	1.01	1.09	ns	Figure 3
	Single-Ended	0.80	0.96	1.20	0.82	0.98	1.22	0.89	1.06	1.29		
t _{PLH}	Propagation Delay,	0.75	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
t_{PHL}	SEL to Output	0.75	0.99	1.20	0.60	1.02	1.25	0.00	1.10	1.55	115	Figure 2
t _{PS}	LH-HL Skew		10	30		10	30		10	30		(Note 4)(Note 7)
t _{OSLH}	Gate-Gate Skew LH		20	30		20	50		20	50	ps	(Note 5)(Note 7)
toshl	Gate-Gate Skew HL		20	50		20	50		20	50	μs	(Note 5)(Note 7)
t _{OST}	Gate-Gate LH-HL Skew		30	60		30	60		30	60		(Note 6)(Note 7)
t _S	Setup Time	300			300			300			no	
	SEL to CLKIN _n	300			300			300			ps	
t _H	Setup Time	0			0			0			no	
	SEL to CLKIN _n	U			U			U			ps	
t _{TLH}	Transition Time	275	510	750	275	500	750	275	480	750	ne	Figure 4
t _{THL}	20% to 80%, 80% to 20%	2/3	310	730	2/3	300	730	2/3	400	730	ps	i iguie 4

Note 4: tpS describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's LOW-to-HIGH and HIGH-to-LOW propagation delays. With differential signal pairs, a LOW-to-HIGH or HIGH-to-LOW transition is defined as the transition of the true output or input pin.

Note 5: t_{OSLH} describes in-phase gate-to-gate differential propagation skews with all differential outputs going LOW-to-HIGH; t_{OSHL} describes the same conditions except with the outputs going HIGH-to-LOW.

 $\textbf{Note 6:} \ t_{OST} \ describes \ the \ maximum \ worst \ case \ difference \ in \ any \ of \ the \ t_{PS}, \ t_{OSLH} \ or \ t_{OST} \ delay \ paths \ combined.$

 $\textbf{Note 7:} \ \textbf{The skew specifications pertain to differential I/O paths}.$

Industrial Version

DC Electrical Characteristics (Note 8)

 $V_{\mbox{\footnotesize EE}} = -4.2 \mbox{\footnotesize V}$ to $-5.7 \mbox{\footnotesize V}, \mbox{\footnotesize $V_{\mbox{\footnotesize CC}} = V_{\mbox{\footnotesize CCA}} = \mbox{\footnotesize GND}}$

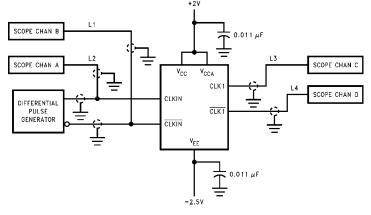
Symbol	Parameter	T _C = -	-40°C	T _C = 0°C	to +85°C	Units	Conditions		
Зупьог		Min	Max	Min	Max	Units			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$V_{IN} = V_{IH} (Max)$	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH}$	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Min)	50Ω to $-2.0V$	
V _{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$I_{VBB} = -250 \mu\text{A}$		
V_{DIFF}	Input Voltage Differential	150		150		mV	Required for Full Output Swing		
V _{CM}	Common Mode Voltage	V _{CC} - 2.0	V _{CC} - 0.5	V _{CC} - 2.0	V _{CC} - 0.5	V			
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for		
							All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW	Signal for	
							All Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current		240		240	μΑ	$V_{IN} = V_{IH} (Max)$		
I _{CBO}	Input Leakage Current	-10		-10		μΑ	$V_{IN} = V_{EE}$		
I _{EE}	Power Supply Current	-100	-40	-100	-40	mA	Inputs Open		

Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

 $\rm V_{EE} = -4.2V$ to $-5.7V, \, V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$T_C = -40^{\circ}C$			T _C = +25°C			$T_C = +85^{\circ}C$			Units	Conditions
Cyllibol	i didiletei	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Conditions
f _{MAX}	Max Toggle Frequency											
	CLKIN A/B to Q _n	750			750			750			MHz	
	SEL to Q _n	575			575			575			MHz	
t _{PLH}	Propagation Delay,											
t _{PHL}	CLKIN _n , to CLK _n											
	Differential	0.78	0.88	0.98	0.82	0.92	1.02	0.89	1.01	1.09	ns	Figure 3
	Single-Ended	0.78	0.95	1.18	0.82	0.98	1.22	0.89	1.06	1.29		
t _{PLH}	Propagation Delay	0.70	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
t _{PHL}	SEL to Output	0.70	0.55	1.20	0.00	1.02	1.23	0.03	1.10	1.55	115	rigure 2
t _{PS}	LH-HL Skew		10	30		10	30		10	30		(Note 9)(Note 12)
toslh	Gate-Gate Skew LH		20	50		20	50		20	50	ps	(Note 10)(Note 12)
toshl	Gate-Gate Skew HL		20	50		20	50		20	50		(Note 10)(Note 12)
tost	Gate-Gate LH-HL Skew		30	60		30	60		30	60		(Note 11)(Note 12)
t _S	Setup Time	300			300			300		-		
	SEL to CLKIN _n	300			300			300			ps	
t _H	Setup Time	0			0			0			ps	
	SEL to CLKIN _n	U			0			0			μs	
t _{TLH}	Transition Time	275	510	750	275	500	750	275	480	750	ps	Figure 4
t _{THL}	20% to 80%, 80% to 20%	2/3	510	130	2/3	500	130	2/3	400	130	μS	i iguie 4


Note 9: tp_S describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's LOW-to-HIGH and HIGH-to-LOW propagation delays. With differential signal pairs, a LOW-to-HIGH or HIGH-to-LOW transition is defined as the transition of the true output or input pin.

Note 10: t_{OSLH} describes in-phase gate-to-gate differential propagation skews with all differential outputs going LOW-to-HIGH; t_{OSHL} describes the same conditions except with the outputs going HIGH-to-LOW.

 $\textbf{Note 11:} \ t_{OST} \ describes \ the \ maximum \ worst \ case \ difference \ in \ any \ of \ the \ t_{PS}, \ t_{OSLH} \ or \ t_{OST} \ delay \ paths \ combined.$

Note 12: The skew specifications pertain to differential I/O paths.

Test Circuit

Shown for testing CLKIN to CLK1 in the differential mode.

L1, L2, L3 and L4 = equal length 50Ω impedance lines.

All unused inputs and outputs are loaded with 50 $\!\Omega$ in parallel with $\leq\!3$ pF to GND.

Scope should have 50Ω input terminator internally.

FIGURE 1. AC Test Circuit

Switching Waveforms

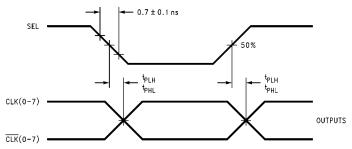


FIGURE 2. Propagation Delay, SEL to Outputs

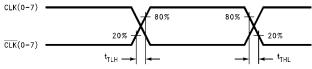
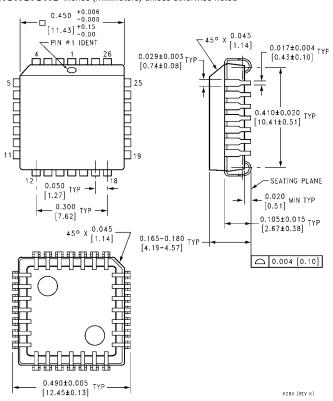



FIGURE 4. Transition Times

Physical Dimensions inches (millimeters) unless otherwise noted

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com