April 1989 Revised August 2000

FAIRCHILD

BEMICONDUCTOR IM

100328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch

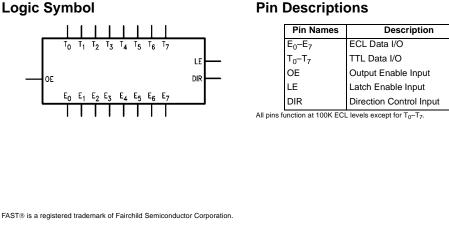
General Description

The 100328 is an octal latched bi-directional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the 100328 transparent.

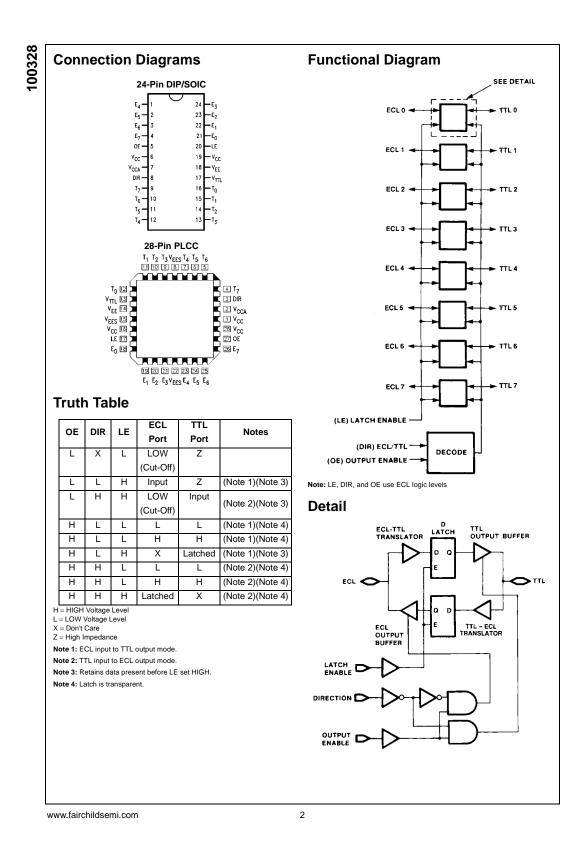
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100328 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have 50 k Ω pull-down resistors.

Ordering Code:


Features

- Identical performance to the 100128 at 50% of the supply current
- Bi-directional translation
- 2000V ESD protection
- Latched outputs
- FAST TTL outputs
- 3-STATE outputs
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range


-		
Order Number	Package Number	Package Description
100328SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100328PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100328QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100328QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

© 2000 Fairchild Semiconductor Corporation DS010219

Absolute Maximum F	Ratings(Note 5)	Recommended Operating					
Storage Temperature (T _{STG})	-65°C to +150°C	_c Conditions					
Maximum Junction Temperature (TJ) +150°C	Case Temperature (T _C)					
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V	Commercial	0°C to +85°C				
V _{TTL} Pin Potential to Ground Pin	-0.5V to +6.0V	Industrial	-40°C to +85°C				
ECL Input Voltage (DC)	V _{EE} to +0.5V	ECL Supply Voltage (V _{EE})	-5.7V to -4.2V				
ECL Output Current		TTL Supply Voltage (VTTI)	+4.5V to +5.5V				
(DC Output HIGH)	–50 mA						
TTL Input Voltage (Note 6)	-0.5V to +6.0V						
TTL Input Current (Note 6)	-30 mA to +5.0 mA						
Voltage Applied to Output		Note 5: The "Absolute Maximum Ratings" ar	e those values beyond which				
in HIGH State		the safety of the device cannot be guarantee operated at these limits. The parametric va					
3-STATE Output	-0.5V to +5.5V	Characteristics tables are not guaranteed at	the absolute maximum rating.				
Current Applied to TTL		The "Recommended Operating Conditions" t for actual device operation.	able will define the conditions				
Output in LOW State (Max)	twice the rated I _{OL} (mA)	Note 6: Either voltage limit or current limit is s	sufficient to protect inputs.				
ESD (Note 7)	≥2000V	Note 7: ESD testing conforms to MIL-STD-88	33, Method 3015.				

Commercial Version

TTL-to-ECL DC Electrical Characteristics (Note 8)

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C, V_{TTL} = +4.5V to +5.5V

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{ОН}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	Loading with 50Ω to – 2V
	Cutoff Voltage					OE or DIR LOW,
			-2000	-1950	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$,
						Loading with 50Ω to $-2V$
V _{OHC}	Output HIGH Voltage	-1035			mV	
	Corner Point HIGH	-1035			mv	$V_{IN} = V_{IH(Min)}$ or $V_{IL(Max)}$
V _{OLC}	Output LOW Voltage			-1610	mV	Loading with 50Ω to $-2V$
	Corner Point LOW			-1010	mv	
V _{IH}	Input HIGH Voltage	2.0		5.0	V	Over V _{TTL} , V _{EE} , T _C Range
V _{IL}	Input LOW Voltage	0		0.8	V	Over V _{TTL} , V _{EE} , T _C Range
IIH	Input HIGH Current			70	μΑ	V _{IN} = +2.7V
	Breakdown Test			1.0	mA	V _{IN} = +5.5V
IIL	Input LOW Current	-700			μΑ	$V_{IN} = +0.5V$
V _{FCD}	Input Clamp Diode Voltage	-1.2			V	I _{IN} = -18 mA
I _{EE}	V _{EE} Supply Current					LE LOW, OE and DIR HIGH
						Inputs OPEN
		-159		-75	mA	$V_{EE} = -4.2V$ to $-4.8V$
		-169		-75		V _{FF} = -4.2V to -5.7V

Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

www.fairchildsemi.com

100328

100328

Commercial Version (Continued) ECL-to-TTL DC Electrical Characteristics (Note 9)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OH}	Output HIGH Voltage	2.7	3.1		v	I _{OH} = -3 mA, V _{TTL} = 4.75V
		2.4	2.9		v	$I_{OH} = -3 \text{ mA}, V_{TTL} = 4.50 \text{V}$
V _{OL}	Output LOW Voltage		0.3	0.5	V	I _{OL} = 24 mA, V _{TTL} = 4.50V
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs
I _{IH}	Input HIGH Current			350	μΑ	V _{IN} = V _{IH} (Max)
IIL	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL}$ (Min)
I _{OZHT}	3-STATE Current Output HIGH			70	μΑ	$V_{OUT} = +2.7V$
I _{OZLT}	3-STATE Current Output LOW	-700			μΑ	$V_{OUT} = +0.5V$
I _{OS}	Output Short-Circuit Current	-150		-60	mA	V _{OUT} = 0.0V, V _{TTL} = +5.5V
I _{TTL}	V _{TTL} Supply Current			74	mA	TTL Outputs LOW
				49	mA	TTL Outputs HIGH
				67	mA	TTL Outputs in 3-STATE

DIP TTL-to-ECL AC Electrical Characteristics (Note 9) $V_{FF} = -4.2V$ to -5.7V, $V_{TT1} = +4.5V$ to +5.5V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C =	25°C	T _C =	85°C	Units	Conditions
Symbol	raiameter	Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	T _N to E _n (Transparent)	1.1	3.5	1.1	3.6	1.1	3.8	ns	Figures 1, 2
t _{PHL} t _{PLH} t _{PHL}	LE to E _n	1.7	3.6	1.7	3.7	1.9	3.9	ns	Figures 1, 2
t _{PZH}	OE to E _n (Cutoff to HIGH)	1.3	4.2	1.5	4.4	1.7	4.8	ns	Figures 1, 2
t _{PHZ}	OE to E _n (HIGH to Cutoff)	1.5	4.5	1.6	4.5	1.6	4.6	ns	Figures 1, 2
t _{PHZ}	DIR to E _n (HIGH to Cutoff)	1.6	4.3	1.6	4.3	1.7	4.5	ns	Figures 1, 2
t _{SET}	T _n to LE	1.1		1.1		1.1		ns	Figures 1, 2
t _{HOLD}	T _n to LE	1.1		1.1		1.1		ns	Figures 1, 2
t _{PW} (H)	Pulse Width LE	2.1		2.1		2.1		ns	Figures 1, 2
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1, 2

Note 9: The specified limits represent the "worst" case value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) DIP ECL-to-TTL AC Electrical Characteristics

100328

<u> </u>	$2V \text{ to } -5.7V, V_{TTL} = +4.5V \text{ to } +$	T _C =	0°C	T _C =	25°C	T _C =	85°C		
Symbol	Parameter .	Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	E _n to T _n	2.3	5.6	2.4	5.6	2.6	5.9	ns	Figures 3, 4
t _{PHL}	(Transparent)					-			3 ,
t _{PLH}	LE to T _n	3.1	7.2	3.1	7.2	3.3	7.7	ns	Figures 3, 4
t _{PHL}	22 10 11	0.1		0.1		0.0			i iguiee e, i
	OE to T _n	3.4	8.45	3.7	8.95	4.0	9.7	-	
	(Enable Time)	3.8	9.2	4.0	9.2	4.3	9.95	ns	Figures 3, 5
t _{PZL}	OE to T _n	3.2	8.95	3.3	8.95	3.5	9.2		
t _{PHZ}	(Disable Time)	3.0	7.7	3.4	8.7	4.1	9.95	ns	Figures 3, 5
t _{PLZ}	DIR to T _n	2.7	8.2	2.8	8.7	3.1	8.95		
t _{PHZ}	(Disable Time)	2.7	0.2 7.45	2.0 3.1	7.95	4.0	9.2	ns	Figures 3, 6
t _{PLZ}	· ,	1.1	7.43	1.1	7.95	4.0	9.2		Figures 2. C
t _{SET}	E _n to LE							ns	Figures 3, 6
t _{HOLD}	E _n to LE	2.1		2.1		2.6		ns	Figures 3, 4
t _{PW} (H)	Pulse Width LE	4.1		4.1		4.1		ns	Figures 3, 7
$V_{EE} = -4.$ Symbol	2V to -5.7V, V _{TTL} = +4.5V to +5. Parameter		: 0°C	T _C =	25°C	T _C =	85°C	Units	Conditions
Cymbol	i didileter	Min	Max	Min	Max	Min	Мах	011110	Conditiona
t _{PLH}	T _n to E _n	1.1	3.3	1.1	3.4	1.1	3.6	ns	Figures 1, 2
t _{PHL}	(Transparent)								
t _{PLH}	LE to E _n	1.7	3.4	1.7	3.5	1.9	3.7	ns	Figures 1, 2
t _{PHL}									
t _{PZH}	OE to E _n	1.3	4.0	1.5	4.2	1.7	4.6	ns	Figures 1, 2
	(Cutoff to HIGH)								
t _{PHZ}	OE to E _n	1.5	4.3	1.6	4.3	1.6	4.4	ns	Figures 1, 2
	(HIGH to Cutoff)								
t _{PHZ}	DIR to E _n	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1, 2
	(HIGH to Cutoff)								
t _{SET}	T _n to LE	1.0		1.0		1.0		ns	Figures 1, 2
tHOLD	T _n to LE	1.0		1.0		1.0		ns	Figures 1, 2
t _{PW} (H)	Pulse Width LE	2.0		2.0		2.0		ns	Figures 1, 2
t _{TLH}	Transition Time	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%								
t _{OSHL}	Maximum Skew Common Edge								PLCC Only
2.5112	Output-to-Output Variation		200		200		200	ps	(Note 10)
	Data to Output Path								l í
tOSLH	Maximum Skew Common Edge							<u> </u>	PLCC Only
JOLIT	Output-to-Output Variation		200		200		200	ps	(Note 10)
	Data to Output Path								
t _{OST}	Maximum Skew Opposite Edge							<u> </u>	PLCC Only
-051	Output-to-Output Variation		650		650		650	ps	(Note 10)
	Data to Output Path		000		000		000	P3	(
t _{PS}	Maximum Skew								PLCC Only
'PS									,
	Pin (Signal) Transition Variation							ps (Note 10)	(Note 10)
	Pin (Signal) Transition Variation Data to Output Path		650		650		650	ps	(Note 10)

Note 10: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs witching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{Ps} guaranteed by design.

100328

Commercial Version (Continued) SOIC and PLCC ECL-to-TTL AC Electrical Characteristics

Symbol	Parameter	T _C =	= 0°C	T _C =	25°C	T _C =	85°C	Units	Conditions
Gymbol	i arameter	Min	Max	Min	Max	Min	Max	onita	Conditiona
t _{PLH}	E _n to T _n	2.3	5.4	2.4	5.4	2.6	5.7	ns	Figures 3, 4
t _{PHL}	(Transparent)								
t _{PLH}	LE to T _n	3.1	7.0	3.1	7.0	3.3	7.5	ns	Figures 3, 4
t _{PHL}									
t _{PZH}	OE to T _n	3.4	8.25	3.7	8.75	4.0	9.5		Figures 3, 5
t _{PZL}	(Enable Time)	3.8	9.0	4.0	9.0	4.3	9.75	ns	Figures 3, 5
t _{PHZ}	OE to T _n	3.2	8.75	3.3	8.75	3.5	9.0		Figures 2 F
t _{PLZ}	(Disable Time)	3.0	7.5	3.4	8.5	4.1	9.75	ns	Figures 3, 5
t _{PHZ}	DIR to T _n	2.7	8.0	2.8	8.5	3.1	8.75	ns	Figures 3, 6
t _{PLZ}	(Disable Time)	2.8	7.25	3.1	7.75	4.0	9.0	115	Figures 5, 6
t _{SET}	E _n to LE	1.0		1.0		1.0		ns	Figures 3, 4
t _{HOLD}	E _n to LE	2.0		2.0		2.5		ns	Figures 3, 4
t _{PW} (H)	Pulse Width LE	4.0		4.0		4.0		ns	Figures 3, 4
t _{OSHL}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		600		600		600	ps	(Note 11)
	Data to Output Path								
t _{OSLH}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		850		850		850	ps	(Note 11)
	Data to Output Path								
t _{OST}	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		1350		1350		1350	ps	(Note 11)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		950		950		950	ps	(Note 11)
	Data to Output Path								

Note 11: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

PLCC TTL-to-ECL DC Electrical Characteristics (Note 12)

 v_{EE} = -4.2V to -5.7V, v_{CC} = v_{CCA} = GND, T_C = -40°C to +85°C, v_{TTL} = +4.5V to +5.5V

Symbol	Parameter	T _C = -	–40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions
Symbol	Farameter	Min	Max	Min	Max	Units	Conditions
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	Loading with 50Ω to $-2V$
	Cutoff Voltage						OE or DIR LOW,
			-1900		-1950	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$,
							Loading with 50 Ω to –2V
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	
	Corner Point HIGH	-1095		-1035		mv	$V_{IN} = V_{IH(Min)}$ or $V_{IL(Max)}$
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	Loading with 50Ω to $-2V$
	Corner Point LOW		1000		-1010	mv	
V _{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	Over V _{TTL} , V _{EE} , T _C Range
V _{IL}	Input LOW Voltage	0	0.8	0	0.8	V	Over V _{TTL} , V _{EE} , T _C Range
I _{IH}	Input HIGH Current		70		70	μΑ	V _{IN} = +2.7V
	Breakdown Test		1.0		1.0	mA	V _{IN} = +5.5V
I _{IL}	Input LOW Current	-700		-700		μΑ	V _{IN} = +0.5V
V _{FCD}	Input Clamp Diode Voltage	-1.2		-1.2		V	I _{IN} = -18 mA
I _{EE}	V _{EE} Supply Current						LE LOW, OE and DIR HIGH
							Inputs OPEN
		-159	-70	-159	-75	mA	$V_{EE} = -4.2V$ to $-4.8V$
		-169	-70	-169	-75		$V_{EE} = -4.2V$ to $-5.7V$

PLCC ECL-to-TTL DC Electrical Characteristics (Note 12)

 $V_{FF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$, $C_{I} = 50$ pF, $V_{TTI} = +4.5V$ to +5.5V

Symbol	Parameter	T _C =	–40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions
Symbol	Faraneter	Min	Max	Min	Max	Units	conditions
V _{OH}	Output HIGH Voltage	2.7		2.7		V	$I_{OH} = -3 \text{ mA}, V_{TTL} = 4.75 \text{V}$
		2.4		2.4		v	$I_{OH} = -3 \text{ mA}, V_{TTL} = 4.50 \text{V}$
V _{OL}	Output LOW Voltage		0.5		0.5	V	I _{OL} = 24 mA, V _{TTL} = 4.50V
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs
IIH	Input HIGH Current		425		350	μΑ	V _{IN} = V _{IH} (Max)
IIH	Input LOW Current	0.50		0.50		μΑ	V _{IN} = V _{IH} (Min)
I _{OZHT}	3-STATE Current Output HIGH		70		70	μΑ	$V_{OUT} = +2.7V$
I _{OZLT}	3-STATE Current Output LOW	-700		-700		μΑ	$V_{OUT} = +0.5V$
I _{OS}	Output Short-Circuit Current	-150	-60	-150	-60	mA	$V_{OUT} = 0.0V, V_{TTL} = +5.5V$
ITTL	V _{TTL} Supply Current		74		74		TTL Outputs LOW
			49		49	mA	TTL Outputs HIGH
			67		67		TTL Outputs in 3-STATE

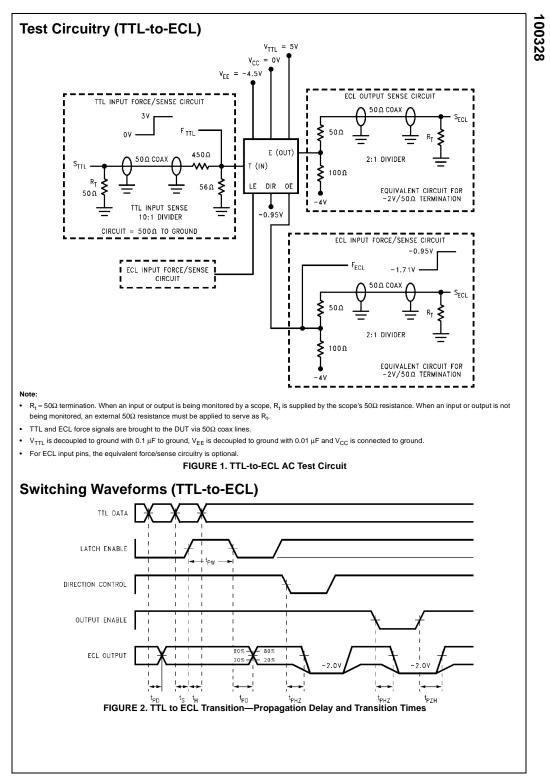
Note 12: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

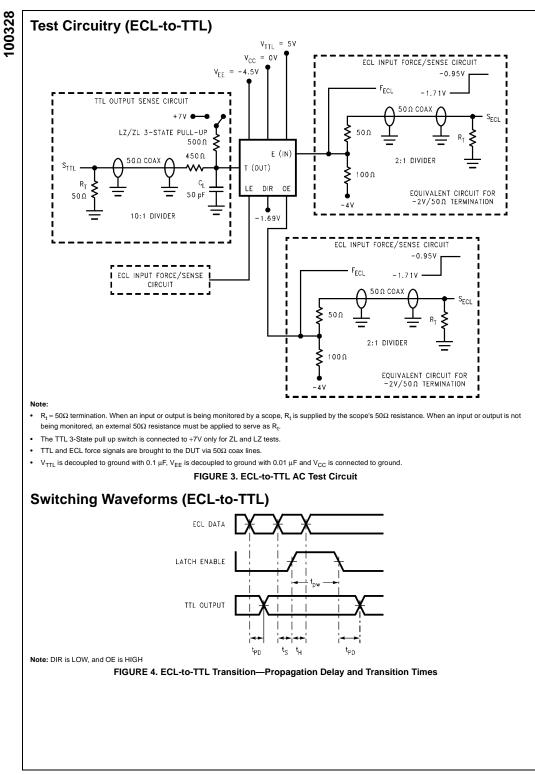
www.fairchildsemi.com

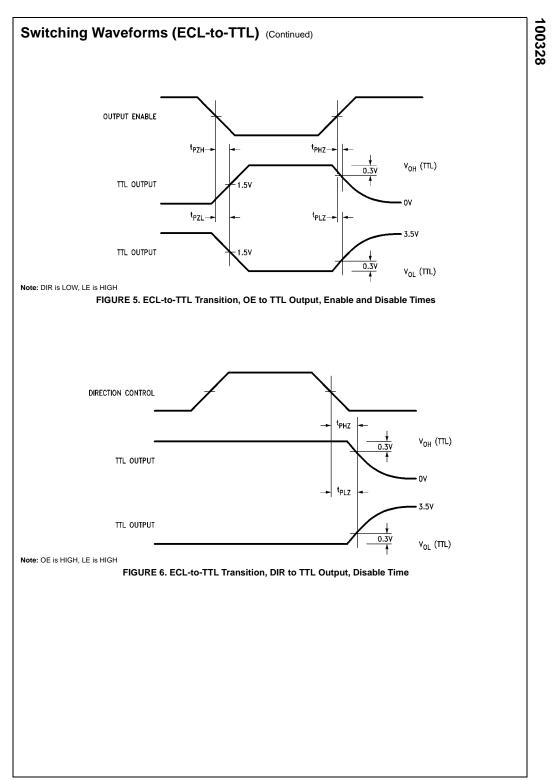
100328

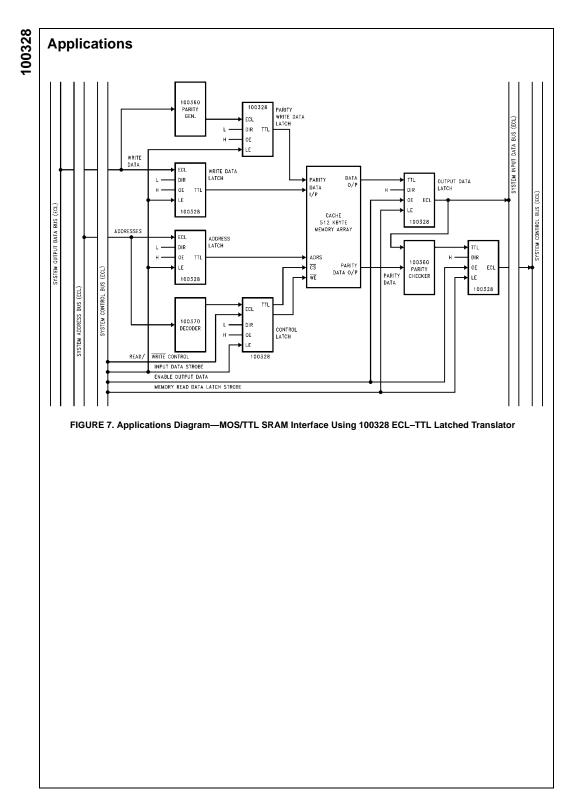
7

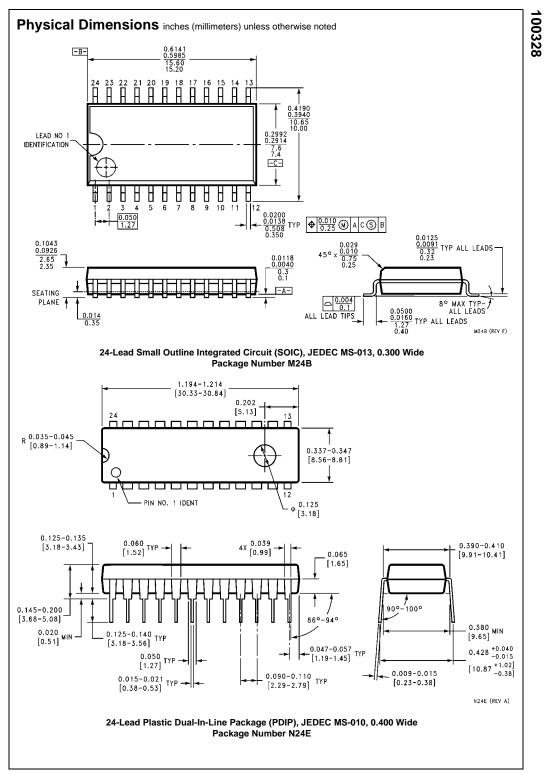
100328


Industrial Version (Continued) PLCC TTL-to-ECL AC Electrical Characteristics V_{FF} = -4.2V to -5.7V, V_{TTI} = +4.5V to +5.5V


Symbol	Parameter	T _C =	–40°C	T _C =	25°C	T _C =	85°C	Units	Conditions
Symbol	Falaneter	Min	Max	Min	Max	Min	Max	Units	Conultions
t _{PLH} t _{PHL}	T _n to E _n (Transparent)	1.0	3.3	1.1	3.4	1.1	3.6	ns	Figures 1, 2
telh tehl	LE to E _n	1.7	3.4	1.7	3.5	1.9	3.7	ns	Figures 1, 2
t _{PZH}	OE to E _n (Cutoff to HIGH)	1.2	4.0	1.5	4.2	1.7	4.6	ns	Figures 1, 2
PHZ	OE to E _n (HIGH to Cutoff)	1.5	4.5	1.6	4.3	1.6	4.4	ns	Figures 1, 2
PHZ	DIR to E _n (HIGH to Cutoff)	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1, 2
İSET	T _n to LE	2.5		1.0		1.0		ns	Figures 1, 2
HOLD	T _n to LE	1.0		1.0		1.0		ns	Figures 1, 2
t _{PW} (H)	Pulse Width LE	2.5		2.0		2.0		ns	Figures 1, 2
^і тін	Transition Time 20% to 80%, 80% to 20%	0.4	2.3	0.6	1.6	0.6	1.6	ns	Figures 1, 2


PLCC ECL-to-TTL AC Electrical Characteristics


 $\mathsf{V}_{\mathsf{EE}}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{\mathsf{TTL}}=+4.5\mathsf{V}$ to $+5.5\mathsf{V},\,\mathsf{C}_{\mathsf{L}}=50~\mathsf{pF}$


Symbol	Parameter	T _C =	= 0°C	T _C =	25°C	T _C =	85°C	Units	Conditions
Symbol	Farameter	Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	E _n to T _n (Transparent)	2.3	5.4	2.4	5.4	2.6	5.7	ns	Figures 3, 4
^і РІН ^і РНL	LE to T _n	3.1	7.4	3.1	7.0	3.3	7.5	ns	Figures 3, 4
t _{PZH} t _{PZL}	OE to T _n (Enable Time)	3.4 3.7	8.3 9.0	3.7 4.0	8.75 9.0	4.0 4.3	9.5 9.75	ns	Figures 3, 5
^і рнz ^і рlz	OE to T _n (Disable Time)	3.2 3.0	9.0 7.5	3.3 3.4	8.75 8.5	3.5 4.1	9.0 9.75	ns	Figures 3, 5
^I РНZ ^I PLZ	DIR to T _n (Disable Time)	2.7 2.8	8.0 7.3	2.8 3.1	8.5 7.75	3.1 4.0	8.75 9.0	ns	Figures 3, 5
t _{SET}	En to LE	2.5		1.0		1.0		ns	Figures 3, 4
HOLD	E _n to LE	2.3		2.0		2.5		ns	Figures 3, 4
t _{PW} (H)	Pulse Width LE	4.0		4.0		4.0		ns	Figures 3, 4

