FAIRCHILD

SEMICONDUCTOR

100352 Low Power 8-Bit Buffer with Cut-Off Drivers

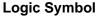
General Description

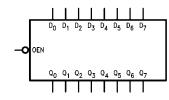
The 100352 contains an 8-bit buffer, individual inputs (D_n) , outputs (Q_n) , and a data output enable pin (\overline{OEN}) . A Q output follows its D input when the \overline{OEN} pin is LOW. A HIGH on \overline{OEN} holds the outputs in a cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is –2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100352 outputs are designed to drive a doubly terminated 50 Ω transmission line (25 Ω load impedance). All inputs have 50 k Ω pull-down resistors.

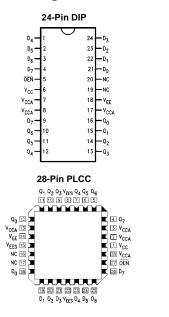
Features

- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

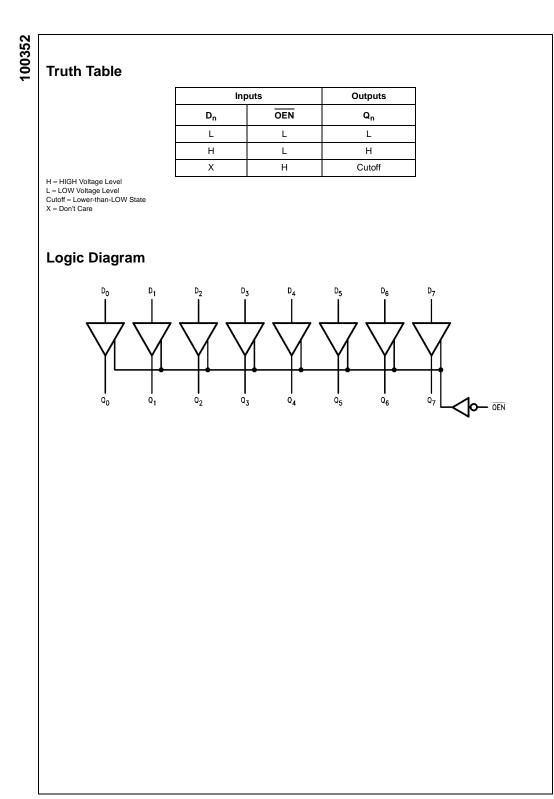

October 1989


Revised August 2000

Ordering Code:


Order Number	Package Number	Package Description
100352PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100352QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100352QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagrams

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
OEN	Output Enable Input
Q ₀ –Q ₇	Data Outputs
NC	No Connect

© 2000 Fairchild Semiconductor Corporation DS010248

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	-65
Maximum Junction Temperature (T _J)	
V _{EE} Pin Potential to Ground Pin	-7
Input Voltage (DC)	
Output Current (DC Output HIGH)	
ESD (Note 2)	

-65°C to +150°C +150°C -7.0V to +0.5V V_{EE} to +0.5V -100 mA ≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	
Industrial	
Supply Voltage (V _{EE})	

0°C to +85°C -40°C to +85°C -5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Co	nditions
V _{он}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH (Max)}	Loading with
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mv	or V _{IL (Min)}	25 Ω to –2.0V
/ _{онс}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH (Min)}$	Loading with
V _{OLC}	Output LOW Voltage			-1610	IIIV	or V _{IL (Max)}	25 Ω to –2.0V
V _{OLZ}	Cut-Off LOW Voltage			-1950	mV	$V_{IN} = V_{IH (Min)}$	OEN = HIGH
						or V _{IL (Max)}	
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Sigr	nal
						for All Inputs	
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Sign	al
						for All Inputs	
IIL	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL (Min)}$	
I _{IH}	Input HIGH Current			240	μΑ	V _{IN} = V _{IH (Max)}	
I _{EE}	Power Supply Current					Inputs Open	
		-138		-70	mA	$V_{\mbox{\scriptsize EE}} = -4.2 \mbox{V}$ to $-4.8 \mbox{\scriptsize V}$	
		-143		-70		$V_{FF} = -4.2V$ to $-5.7V$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$V_{FF} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA} = GND$
--

Symbol	Parameter .	T _C =	$T_C = 0^\circ C$		$T_C = +25^{\circ}C$		T _C = +85°C		Conditions
Gymbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	0.70	2.00	0.70	2.00	0.70	2.20	ns	Figures 1, 2
t _{PHL}	Dn to Output	0.70	2.00	0.70	2.00	0.70	2.20	115	(Note 4)
t _{PZH}	Propagation Delay	1.60	4.20	1.60	4.20	1.60	4.20		Figures 1, 2
t _{PHZ}	OEN to Output	1.00	2.70	1.00	2.70	1.00	2.70	ns	(Note 4)
t _{TLH}	Transition Time	0.45	2.00	0.45	2.00	0.45	2.00		Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

100352

Commercial Version (Continued) **PLCC AC Electrical Characteristics** VEE = 4.2V to -5.7V, Vec = Veco = GND

Symbol	Parameter	T _C =	°C∘C	T _C = -	+25°C	$T_C = +85^{\circ}C$		Units	Conditions
Gymbol		Min	Max	Min	Max	Min	Max	Onits	Conditions
t _{PLH} t _{PHL}	Propagation Delay Dn to Output	0.70	1.80	0.70	1.80	0.70	2.00	ns	Figures 1, 2 (Note 5)
t _{PZH}	Propagation Delay	1.60	4.00	1.60	4.00	1.60	4.00	ns	Figures 1, 2
t _{PHZ}	OEN to Output	1.00	2.50	1.00	2.50	1.00	2.50	115	(Note 5)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 2
t _{oshl}	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		230		230		230	ps	PLCC only (Note 6)
t _{oslh}	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		240		240		240	ps	PLCC only (Note 6)
t _{ost}	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		350		350		350	ps	PLCC only (Note 6)
t _{PS}	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		350		350		350	ps	PLCC only (Note 6)

Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

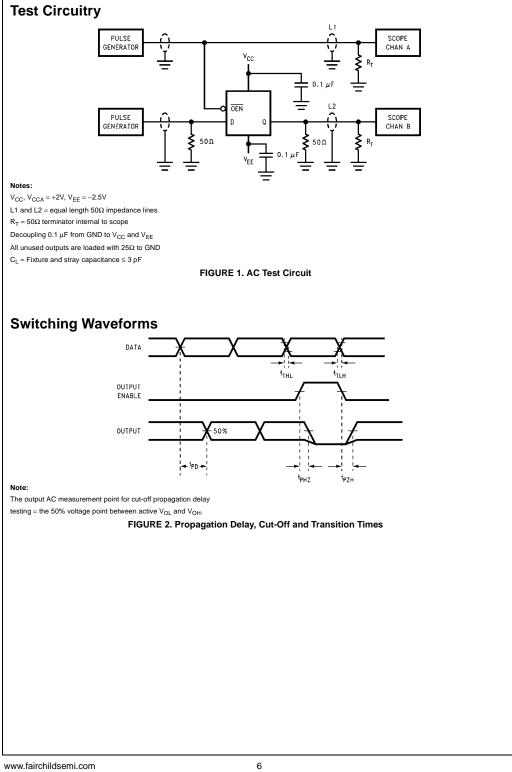
PLCC DC Electrical Characteristics (Note 7) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = -40^{\circ}C$ to +85°C

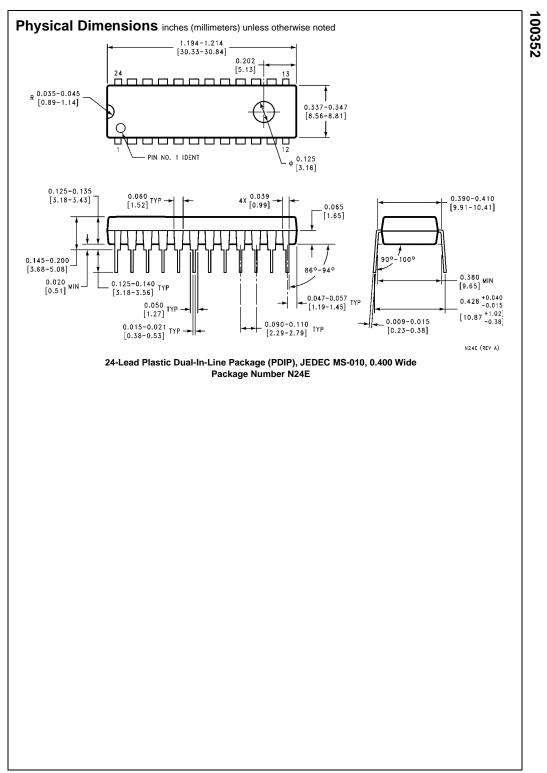
Symbol	Parameter	T _C = -	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C$ to $+85^{\circ}C$		Conditions			
Symbol	Farameter	Min	Max	Min	Max	Units	Conditiona			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH(Max)}	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mv	or V _{IL(Min)}	25Ω to -2.0		
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH(Min)}$	Loading with		
V _{OLC}	Output LOW Voltage		-1565		-1610	IIIV	or V _{IL(Max)}	25Ω to -2.0		
V _{OLZ}	Cut-Off LOW Voltage		-1950		-1950	mV	$V_{IN} = V_{IH(Min)}$	OEN = HIG		
							or V _{IL} (Max)			
VIH	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Sigr	nal		
							for All Inputs			
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Sign	al		
							for All Inputs			
IIL	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL(Min)}$			
I _{IH}	Input HIGH Current		340		240	μΑ	$V_{IN} = V_{IH(Max)}$			
I _{EE}	Power Supply Current						Inputs OPEN			
		-138	-60	-138	-70	mA	$V_{EE} = -4.2V$ to $-4.8V$			
		-143	-60	-143	-70		$V_{EE} = -4.2V$ to $-5.7V$			

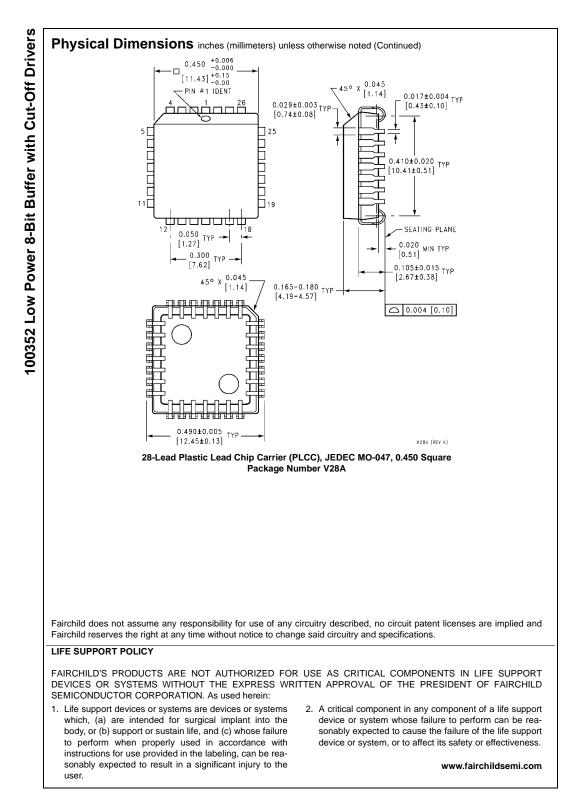
news in the approximation and representative works case value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 V_{EE} = 4.2V to –5.7V, V_{CC} = V_{CCA} = GND


Symbol	Parameter	T _C = -40°C		T _C = +25°C		T _C = -	+85°C	Units	Conditions
Cymbol		Min	Max	Min	Max	Min	Max	Onito	Conditions
t _{PLH}	Propagation Delay	0.60	1.80	0.70	1.80	0.70	2.00	ns	Figures 1, 2
t _{PHL}	Dn to Output	0.00	1.00	0.70	1.00	0.70	2.00	115	(Note 8)
t _{PZH}	Propagation Delay	1.40	4.40	1.60	4.00	1.60	4.00	00	Figures 1, 2
t _{PHZ}	OEN to Output	1.00	2.50	1.00	2.50	1.00	2.50	ns	(Note 8)
t _{TLH}	Transition Time	0.40	2.50	0.45	1.90	0.45	1.90	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.40	2.30	0.45	1.90	0.45	1.90	115	rigules 1, 2


Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.


www.fairchildsemi.com

100352

