

Truth Table

Inputs				
$\mathbf{D}_{\mathbf{n}}$	$\overline{\mathbf{C E N}}$	$\mathbf{C P}$	$\overline{\mathbf{O E N}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	L	-	L	L
H	L	-	L	H
X	X	L	L	NC
X	X	H	L	NC
X	H	X	L	NC
X	X	X	H	Cutoff

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
NC = No Change
$\mathrm{NC}=$ No Chang
$\mathrm{X}=$ Don't Care
Cutoff $=$ Lower-than-LOW State
= LOW-to-HIGH Transition

Logic Diagram

Absolute Maximum Ratings(Note 1)				Recommended Operating					
Storage Temperature ($\mathrm{T}_{\text {STG }}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				Conditions					
Maximum Junction Temperature (T_{J})			$150^{\circ} \mathrm{C}$	Case Temperature (T_{C})					
V_{EE} Pin Potential to Ground Pin Input Voltage (DC)		-7.0 V to +0.5 V		Commercial			$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
		V_{EE} to +0.5 V		Industrial			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Output Current (DC Output HIGH)		$-100 \mathrm{~mA}$		Supply Voltage (V_{EE})			-5.7 V to -4.2 V		
ESD (Note 2)		$\geq 2000 \mathrm{~V}$		Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.					
		Note 2: ESD testing conforms to MIL-STD-883, Method 3015.							
Commercial Version									
DC Electrical Characteristics (Note 3)									
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$									
Symbol	Parameter			Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL} \text { (Min) }} \\ & \hline \end{aligned}$	Loading with 25Ω to -2.0 V		
V_{OL}	Output LOW Voltage	-1830	-1705	-1620					
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })}$	Loading with		
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage					$\text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) }$	$25 \Omega \text { to }-2.0 \mathrm{~V}$		
$\mathrm{V}_{\text {OLZ }}$	Cutoff LOW Voltage			-1950	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs			
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs			
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {Min }}$)			
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max) }}$			
I_{EE}	Power Supply Current	$\begin{aligned} & -202 \\ & -209 \end{aligned}$		$\begin{aligned} & -105 \\ & -105 \end{aligned}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
DIP AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Toggle Frequency	250		250		250		MHz	Figures 1, 4
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1, 4 (Note 4)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{th}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{OEN}} \text { to Output } \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	ns	Figures 3, 7 (Note 4)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{array}$	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 4
t_{S}	Setup Time $\frac{D_{n}}{\overline{C E N}}$ (Disable Time) $\overline{C E N}$ (Release Time)	$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		ns	Figures 2, 5
t_{H}	Hold Time D_{n}	0.10		0.10		0.10		ns	Figures 1, 6
$\overline{t_{\text {PW }}(\mathrm{H})}$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 4

PLCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Toggle Frequency	250		250		250		MHz	Figures 1, 4
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 4 (Note 5)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay $\overline{\text { OEN }}$ to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	ns	Figures 3, 7 (Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time $20 \% \text { to } 80 \%, 80 \% \text { to } 20 \%$	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 4
t_{S}	Setup Time D_{n} $\overline{\mathrm{CEN}}$ (Disable Time) $\overline{\mathrm{CEN}}$ (Release Time)	$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		ns	Figures 2, 5
t_{H}	Hold Time D_{n}	0.00		0.00		0.00		ns	Figures 1, 6
${ }_{\mathrm{t}_{\text {PW }}(\mathrm{H})}$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 4
toshl	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		280		280		280	ps	(Note 6)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		340		340		340	ps	(Note 6)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Clock to Output Path		340		340		340	ps	(Note 6)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Clock to Output Path		250		250		250	ps	(Note 6)
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching. Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (tOSHL), or LOW-to-HIGH (tosLh), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.									

Industrial Version

PLCC DC Electrical Characteristics (Note 7)

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610			50Ω to -2.0V
$\mathrm{V}_{\text {OLZ }}$	Cutoff LOW Voltage		-1900		-1950	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -202 \\ & -209 \end{aligned}$	$\begin{aligned} & -105 \\ & -105 \\ & \hline \end{aligned}$	$\begin{aligned} & -202 \\ & -209 \end{aligned}$	$\begin{aligned} & -105 \\ & -105 \end{aligned}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 7: The specified limits represent the "worst case value for the parameter. Since these values normally occur at the temperature extremes, additional sen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching

Test Circuitry

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 25Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

FIGURE 5. Setup and Pulse Width Times

Notes:
t_{S} is the minimum time before the transition of the clock that information must be present at the data input.
t_{H} is the minimum time after the transition of the clock that information must remain unchanged at the data input
FIGURE 6. Data Setup and Hold Time

Note:
The output AC measurement point for cut-off propagation delay testing $=$ the 50% voltage point between active $V_{O L}$ and $V_{O H}$. FIGURE 7. Cutoff Times

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
 Package Number N24E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
