

March 1998 Revised August 2000

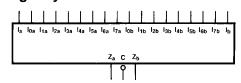
### 100360

# Low Power Dual Parity Checker/Generator

### **General Description**

The 100360 is a dual parity checker/generator. Each half has nine inputs; the output is HIGH when an even number of inputs are HIGH. One of the nine inputs ( $l_a$  or  $l_b$ ) has the shorter through-put delay and is therefore preferred as the expansion input for generating parity for 16 or more bits. The 100360 also has a Compare  $(\overline{C})$  output which allows the circuit to compare two 8-bit words. The  $\overline{C}$  output is LOW when the two words match, bit for bit. All inputs have 50 k $\Omega$  pull-down resistors.

### **Features**


- Lower power than 100160
- 2000V ESD protection
- Pin/function compatible with 100160
- $\blacksquare$  Voltage compensated operating range = -4.2V to -5.7V
- Min to Max propagation delay 35% tighter than 100160
- Available to industrial grade temperature range

### **Ordering Code:**

| Order Number | Package Number | Package Description                                                                                                |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------|
| 100360PC     | N24E           | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide                                              |
| 100360QC     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square                                               |
| 100360QI     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C) |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

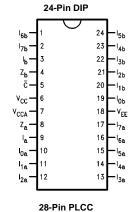
### **Logic Symbol**

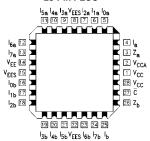


### **Pin Descriptions**

| Pin Names                                                           | Description        |
|---------------------------------------------------------------------|--------------------|
| I <sub>a</sub> , I <sub>b</sub> , I <sub>na</sub> , I <sub>nb</sub> | Data Inputs        |
| $\frac{Z_a}{C}$                                                     | Parity Odd Outputs |
| C                                                                   | Compare Output     |

### **Truth Table**


(Each Half)


| Sum of      | Output |
|-------------|--------|
| HIGH Inputs | z      |
| Even        | HIGH   |
| Odd         | LOW    |

### **Comparator Function**

$$\begin{split} \overline{C} &= (I_{0a} \oplus I_{1a}) + (I_{2a} \oplus I_{3a}) + (I_{4a} \oplus I_{5a}) + (I_{6a} \oplus I_{7a}) + \\ & (I_{0b} \oplus I_{1b}) + (I_{2b} \oplus I_{3b}) + (I_{4b} \oplus I_{5b}) + (I_{6b} \oplus I_{7b}) \end{split}$$

### **Connection Diagrams**





# Logic Diagram l<sub>b</sub> |<sub>76</sub> |<sub>66</sub> |<sub>56</sub> |<sub>46</sub> |<sub>36</sub> |<sub>26</sub> |<sub>16</sub> |<sub>06</sub>

### **Absolute Maximum Ratings**(Note 1)

# Recommended Operating Conditions

Case Temperature  $(T_C)$ 

 $\begin{array}{ccc} \text{Commercial} & 0^{\circ}\text{C to +85^{\circ}\text{C}} \\ \text{Industrial} & -40^{\circ}\text{C to +85^{\circ}\text{C}} \\ \text{Supply Voltage (V}_{\text{EE}}) & -5.7\text{V to -4.2V} \\ \end{array}$ 

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

### **Commercial Version**

### DC Electrical Characteristics (Note 3)

 $\rm V_{EE} = -4.2V$  to  $-5.7V,~V_{CC} = V_{CCA} = GND,~T_{C} = 0^{\circ}C$  to  $+85^{\circ}C$ 

| Symbol           | Parameter                         | Min   | Тур   | Max   | Units | Conditions                              |                       |  |
|------------------|-----------------------------------|-------|-------|-------|-------|-----------------------------------------|-----------------------|--|
| V <sub>OH</sub>  | Output HIGH Voltage               | -1025 | -955  | -870  | mV    | V <sub>IN</sub> = V <sub>IH</sub> (Max) | Loading with          |  |
| V <sub>OL</sub>  | Output LOW Voltage                | -1830 | -1705 | -1620 | IIIV  | or V <sub>IL (Min)</sub>                | $50\Omega$ to $-2.0V$ |  |
| V <sub>OHC</sub> | Output HIGH Voltage               | -1035 |       |       | mV    | V <sub>IN</sub> = V <sub>IH</sub> (Min) | Loading with          |  |
| V <sub>OLC</sub> | Output LOW Voltage                |       |       | -1610 | IIIV  | or V <sub>IL (Max)</sub>                | $50\Omega$ to $-2.0V$ |  |
| $V_{IH}$         | Input HIGH Voltage                | -1165 |       | -870  | mV    | Guaranteed HIGH Signal                  |                       |  |
|                  |                                   |       |       |       |       | for All Inputs                          |                       |  |
| V <sub>IL</sub>  | Input LOW Voltage                 | -1830 |       | -1475 | mV    | Guaranteed LOW Signal                   |                       |  |
|                  |                                   |       |       |       |       | for All Inputs                          |                       |  |
| I <sub>IL</sub>  | Input LOW Current                 | 0.50  |       |       | μΑ    | V <sub>IN</sub> = V <sub>IL</sub> (Min) |                       |  |
| I <sub>IH</sub>  | Input HIGH Current                |       |       |       |       |                                         |                       |  |
|                  | I <sub>a</sub> , I <sub>b</sub>   |       |       | 340   | μΑ    | $V_{IN} = V_{IH} (Max)$                 |                       |  |
|                  | I <sub>na</sub> , I <sub>nb</sub> |       |       | 240   |       |                                         |                       |  |
| I <sub>EE</sub>  | Power Supply Current              | -100  |       | -50   | mA    | Inputs OPEN                             |                       |  |

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

### **DIP AC Electrical Characteristics**

 $V_{\mbox{\footnotesize EE}} = -4.2 \mbox{\footnotesize V}$  to  $-5.7 \mbox{\footnotesize V}, \mbox{\footnotesize $V_{\mbox{\footnotesize CC}} = V_{\mbox{\footnotesize CCA}} = \mbox{\footnotesize GND}$ 

| Symbol           | Parameter                             | T <sub>C</sub> = 0°C |      | T <sub>C</sub> = +25°C |      | T <sub>C</sub> = +85°C |      | Units  | Conditions   |
|------------------|---------------------------------------|----------------------|------|------------------------|------|------------------------|------|--------|--------------|
| Syllibol         |                                       | Min                  | Max  | Min                    | Max  | Min                    | Max  | Ollits | Conditions   |
| t <sub>PLH</sub> | Propagation Delay                     | 1.10                 | 2.75 | 1.10                   | 2.75 | 1.10                   | 2.75 | ns     |              |
| t <sub>PHL</sub> | $I_{na}$ , $I_{nb}$ to $Z_a$ , $Z_b$  | 1.10                 | 2.75 | 1.10                   | 2.75 | 1.10                   | 2.75 | 115    |              |
| t <sub>PLH</sub> | Propagation Delay                     | 1.10                 | 2.80 | 1.10                   | 2.80 | 1.10                   | 2.80 | ns     |              |
| t <sub>PHL</sub> | $I_{na}$ , $I_{nb}$ to $\overline{C}$ | 1.10                 | 2.80 | 1.10                   | 2.00 | 1.10                   | 2.00 | 115    | Figures 1, 2 |
| t <sub>PLH</sub> | Propagation Delay                     | 0.50                 | 1.20 | 0.60                   | 1.30 | 0.60                   | 1.30 | ns     |              |
| t <sub>PHL</sub> | $I_a$ , $I_b$ to $Z_a$ , $Z_b$        | 0.50                 | 1.20 | 0.00                   | 1.50 | 0.00                   | 1.50 | 113    |              |
| t <sub>TLH</sub> | Transition Time                       | 0.35                 | 1.10 | 0.35                   | 1.10 | 0.35                   | 1.10 | ns     |              |
| t <sub>THL</sub> | 20% to 80%, 80% to 20%                | 0.33                 | 1.10 | 0.33                   | 1.10 | 0.33                   | 1.10 | 115    |              |

# Commercial Version (Continued) PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND$ 

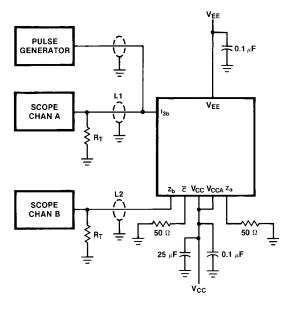
| Symbol           | Parameter                              | $T_C = 0$ °C |      | $T_C = +25^{\circ}C$ |      | $T_C = +85^{\circ}C$ |      | Units | Conditions   |
|------------------|----------------------------------------|--------------|------|----------------------|------|----------------------|------|-------|--------------|
|                  |                                        | Min          | Max  | Min                  | Max  | Min                  | Max  | Onits | Conditions   |
| t <sub>PLH</sub> | Propagation Delay                      | 1.10         | 2.75 | 1.10                 | 2.75 | 1.10                 | 2.75 | ns    |              |
| $t_{PHL}$        | $I_{na}$ , $I_{nb}$ to $Z_a$ , $Z_b$   | 1.10         | 2.75 | 1.10                 | 2.75 | 1.10                 | 2.75 | 115   |              |
| t <sub>PLH</sub> | Propagation Delay                      | 1.10         | 2.80 | 1.10                 | 2.80 | 1.10                 | 2.80 | ns    |              |
| t <sub>PHL</sub> | I <sub>na</sub> , I <sub>nb</sub> to C | 1.10         | 2.00 | 1.10                 | 2.00 | 1.10                 | 2.00 | 115   | Figures 1, 2 |
| t <sub>PLH</sub> | Propagation Delay                      | 0.50         | 1.20 | 0.60                 | 1.30 | 0.60                 | 1.30 | ns    | rigules 1, 2 |
| t <sub>PHL</sub> | $I_a$ , $I_b$ to $Z_a$ , $Z_b$         | 0.50         | 1.20 | 0.00                 | 1.30 | 0.00                 | 1.30 | 115   |              |
| t <sub>TLH</sub> | Transition Time                        | 0.35         | 1.10 | 0.35                 | 1.10 | 0.35                 | 1.10 | ns    |              |
| t <sub>THL</sub> | 20% to 80%, 80% to 20%                 | 0.33         | 1.10 | 0.33                 | 1.10 | 0.33                 | 1.10 | 115   |              |

### **Industrial Version**

## PLCC DC Electrical Characteristics (Note 4)

 $\rm V_{EE} = -4.2V$  to  $-5.7V,~V_{CC} = V_{CCA} = GND,~T_{C} = -40^{\circ}C$  to  $+85^{\circ}C$ 

| Symbol           | Parameter                         | T <sub>C</sub> = -40°C |       | T <sub>C</sub> = 0°C | to +85°C | Units | Conditions                                           |                       |  |
|------------------|-----------------------------------|------------------------|-------|----------------------|----------|-------|------------------------------------------------------|-----------------------|--|
| - Cymbol         | T drameter                        | Min                    | Max   | Min                  | Max      | Onno  | Conditions                                           |                       |  |
| V <sub>OH</sub>  | Output HIGH Voltage               | -1085                  | -870  | -1025                | -870     | mV    | V <sub>IN</sub> =V <sub>IH</sub> (Max)               | Loading with          |  |
| V <sub>OL</sub>  | Output LOW Voltage                | -1830                  | -1575 | -1830                | -1620    | mV    | or V <sub>IL</sub> (Min)                             | $50\Omega$ to $-2.0V$ |  |
| V <sub>OHC</sub> | Output HIGH Voltage               | -1095                  |       | -1035                |          | mV    | V <sub>IN</sub> = V <sub>IH</sub> (Min) Loading with |                       |  |
| V <sub>OLC</sub> | Output LOW Voltage                |                        | -1565 |                      | -1610    | mV    | or $V_{IL}$ (Max) 50 $\Omega$ to -2.0                |                       |  |
| V <sub>IH</sub>  | Input HIGH Voltage                | -1170                  | -870  | -1165                | -870     | mV    | Guaranteed HIGH Signal                               |                       |  |
|                  |                                   |                        |       |                      |          |       | for All Inputs                                       |                       |  |
| V <sub>IL</sub>  | Input LOW Voltage                 | -1830                  | -1480 | -1830                | -1475    | mV    | Guaranteed LOW Signal                                |                       |  |
|                  |                                   |                        |       |                      |          |       | for All Inputs                                       |                       |  |
| I <sub>IL</sub>  | Input LOW Current                 | 0.50                   |       | 0.50                 |          | μΑ    | $V_{IN} = V_{IL}$ (Min)                              |                       |  |
| I <sub>IH</sub>  | Input HIGH Current                |                        |       |                      |          |       |                                                      |                       |  |
|                  | I <sub>a</sub> , I <sub>b</sub>   |                        | 340   |                      | 340      | μΑ    | V <sub>IN</sub> = V <sub>IH</sub> (Max)              |                       |  |
|                  | I <sub>na</sub> , I <sub>nb</sub> |                        | 240   |                      | 240      |       |                                                      |                       |  |
| I <sub>EE</sub>  | Power Supply Current              | -100                   | -50   | -100                 | -50      | mA    | Inputs OPEN                                          |                       |  |


Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

### **PLCC AC Electrical Characteristics**

 $V_{\mbox{\footnotesize EE}} = -4.2\mbox{\footnotesize V}$  to  $-5.7\mbox{\footnotesize V}, \mbox{\footnotesize $V_{\mbox{\footnotesize CC}} = V_{\mbox{\footnotesize CCA}} = \mbox{\footnotesize GND}}$ 

| Symbol                               | Parameter                                                                            | $T_C = -40^{\circ}C$ |      | T <sub>C</sub> = +25°C |      | $T_C = +85^{\circ}C$ |      | Units  | Conditions   |
|--------------------------------------|--------------------------------------------------------------------------------------|----------------------|------|------------------------|------|----------------------|------|--------|--------------|
| Cynnoon                              |                                                                                      | Min                  | Max  | Min                    | Max  | Min                  | Max  | Office | Conditions   |
| t <sub>PLH</sub>                     | Propagation Delay Ina, Inb to Za, Zb                                                 | 1.00                 | 2.75 | 1.10                   | 2.75 | 1.10                 | 2.75 | ns     |              |
| t <sub>PLH</sub>                     | Propagation Delay                                                                    | 1.00                 | 2.80 | 1.10                   | 2.80 | 1.10                 | 2.80 | ns     | Figures 1, 2 |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay I <sub>a</sub> , I <sub>b</sub> to Z <sub>a</sub> , Z <sub>b</sub> | 0.50                 | 1.20 | 0.60                   | 1.30 | 0.60                 | 1.30 | ns     | Tigules 1, 2 |
| t <sub>TLH</sub><br>t <sub>THL</sub> | Transition Time<br>20% to 80%, 80% to 20%                                            | 0.35                 | 1.10 | 0.35                   | 1.10 | 0.35                 | 1.10 | ns     |              |

# **Test Circuitry**



### Notes

 $\mathrm{V_{CC}},\ \mathrm{V_{CCA}} = +2\mathrm{V},\ \mathrm{V_{EE}} = -2.5\mathrm{V}$ 

L1 and L2 = equal length  $50\Omega$  impedance lines

 $R_{T}=50\Omega$  terminator internal to scope

Decoupling 0.1  $\mu\text{F}$  from GND to  $V_{CC}$  and  $V_{EE}$ 

All unused outputs are loaded with  $50\Omega$  to GND

 $C_L$  = Fixture and stray capacitance  $\leq 3 \text{ pF}$ 

FIGURE 1. AC Test Circuit

# **Switching Waveforms**

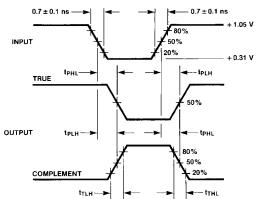
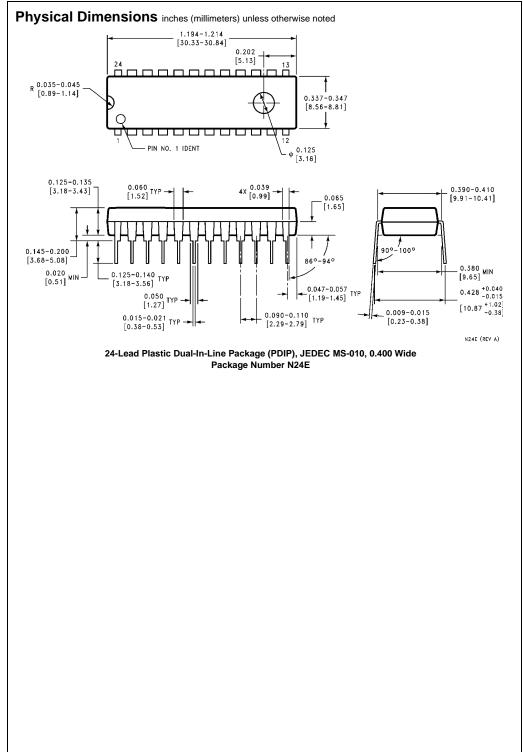
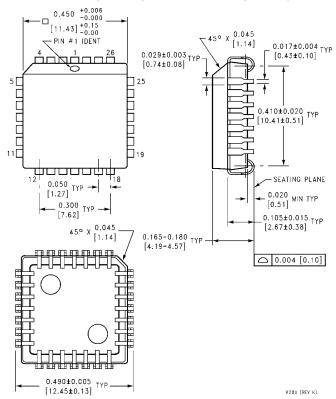





FIGURE 2. Propagation Delay and Transition Times



# Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

7

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com