2N3859A

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA ．Sourced from Process 10．See PN100 for characteristics．

Absolute Maximum Ratings＊TA $=25^{\circ} \mathrm{C}$ unesss ontemise noted

Symbol	Parameter	Value	Units
$\mathrm{V}_{\text {CEO }}$	Collector－Emitter Voltage	60	V
$\mathrm{~V}_{\text {CBO }}$	Collector－Base Voltage	60	V
$\mathrm{~V}_{\text {EBO }}$	Emitter－Base Voltage	6.0	V
I_{C}	Collector Current－Continuous	500	mA
$\mathrm{~T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

＊These ratings are limiting values above which the serviceability of any semiconductor device may be impaired．

NOTES：

1）These ratings are based on a maximum junction temperature of 150 degrees C ．
2）These are steady state limits．The factory should be consulted on applications involving pulsed or low duty cycle operations．

Thermal Characteristics $\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Max	Units
		2N3859A	
P_{D}	Total Device Dissipation	625	mW
	Derate above 25		
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance，Junction to Case	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {өコA }}$	Thermal Resistance，Junction to Ambient	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

OFF CHARACTERISTICS

$\mathrm{V}_{(\text {BR }) \text { CEO }}$	Collector-Emitter Breakdown Voltage *	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	60		V
$\mathrm{~V}_{(\mathrm{BR}) \text { CBO }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	60		V
$\mathrm{~V}_{(\text {(BR) }} \mathrm{EBO}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	6.0		V
$\mathrm{I}_{\mathrm{CBO}}$	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.5	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{EBO}}$	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=4.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		0.5	$\mu \mathrm{~A}$

ON CHARACTERISTICS*

h_{FE}	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	75	200	

SMALL SIGNAL CHARACTERISTICS

C_{ob}	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		4	pF
f_{T}	Current Gain - Bandwidth Product	$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	90	250	MHz
rb' C_{C}	Collector - Base Time Constant	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}$, $\mathrm{f}=31.9 \mathrm{MHz}$		150	pS

*Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

