

Functional Description

The ABT16373 contains sixteen D-type latches with 3STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_{n}) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e., a latch output will change states each time its D input changes. When $L E_{n}$ is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE_{n}. The 3 STATE standard outputs are controlled by the Output Enable ($\overline{\mathrm{OE}}_{n}$) input. When $\overline{\mathrm{OE}}_{n}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the stan dard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Tables

Inputs			Outputs
$L E_{1}$	OE_{1}	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	(Previous)
Inputs			Outputs
$L E_{2}$	$\overline{\mathrm{OE}}_{2}$	$D_{8}-D_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	(Previous)

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$Z=$ High Impedance
Previous = previous output prior to HIGH-to-LOW transition of LE

Logic Diagrams

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Free Air Ambient Temperature $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Supply Voltage $\quad+4.5 \mathrm{~V}$ to +5.5 V
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V	Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ）
Input Voltage（Note 2）	-0.5 V to +7.0 V	Data Input $\quad 50 \mathrm{mV} / \mathrm{ns}$
Input Current（Note 2）	-30 mA to +5.0 mA	Enable Input $\quad 20 \mathrm{mV} / \mathrm{ns}$
Voltage Applied to Any Output in the Disabled or		
Power－Off State	-0.5 V to +5.5 V	
in the HIGH State	-0.5 V to V_{CC}	
Current Applied to Output in LOW State（Max）	e the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$	
DC Latchup Source Current：$\overline{\mathrm{OE}}$ Pin	－350 mA	
（Across Comm Operating Range）		Note 1：Absolute maximum ratings are values beyond which the device
Other Pins	－500 mA	may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Over Voltage Latchup（I／O）	10 V	Note 2：Either voltage limit or current limit is sufficient to protect inputs．

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	v_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$				Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$
I_{H}	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}=2.7 \mathrm{~V}(\text { Note } 3)} \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\overline{\mathrm{I}}$ BVI	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
ILL	Input LOW Current			$\begin{aligned} & -1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{2}}=0.5 \mathrm{~V}(\text { Note } 3) \\ & \mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}=0.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{1 \mathrm{D}}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\mathrm{l}_{\text {OzH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
Iozl	Output Leakage Current			－10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
los	Output Short－Circuit Current	－100		－275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$l_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Izz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {Out }}=5.5 \mathrm{~V}$ ；All Others GND
${ }^{\text {ICCH }}$	Power Supply Current			2.0	mA	Max	All Outputs HIGH
${ }_{\text {CCL }}$	Power Supply Current			62	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current			2.0	mA	Max	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ All Others at V_{CC} or GND
${ }_{\text {ICCT }}$	Additional $I_{C C} /$ lnput Outputs Enabled Outputs 3－STATE Outputs 3－STATE			$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Max	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Enable Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Data Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$
$\overline{\mathrm{I} C \text { CD }}$	Dynamic ICC \quad No Load （Note 3）			0.15	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open，LE＝ V_{CC} $\overline{\mathrm{OE}}=\mathrm{GND}$ ，（Note 4） One Bit Toggling，50\％Duty Cycle
Note 3：Guaranteed，but not tested． Note 4：For 8 bits toggling， $\mathrm{I}_{\mathrm{CCD}}<0.8 \mathrm{~mA} / \mathrm{MHz}$ ．							

Physical Dimensions inches (millimeters) unless otherwise noted

0	$0.0031[0.08](\mathbb{1})$	C	$A(5)$	$B(5)$

DETAIL E TYP

Package Number MS48A

www.fairchildsemi.com

