

Function Table

Inputs						Data I/O (Note 1)		Output Operation Mode
$\overline{\mathrm{OE}}_{1}$	DIR ${ }_{1}$	CPAB ${ }_{1}$	CPBA_{1}	SAB_{1}	SBA ${ }_{1}$	A_{0-7}	B_{0-7}	
H	X	H or L	H or L	X	X			Isolation
H	X	-	X	X	x	Input	Input	Clock An Data into A Register
H	X	X	\sim	X	X			Clock Bn Data Into B Register
L	H	X	X	L	X			An to Bn-Real Time (Transparent Mode)
L	H	\sim	X	L	X	Input	Output	Clock An Data to A Register
L	H	H or L	X	H	X			A Register to Bn (Stored Mode)
L	H	\sim	X	H	X			Clock An Data into A Register and Output to Bn
L	L	X	X	X	L			Bn to An-Real Time (Transparent Mode)
L	L	X	\sim	X	L	Output	Input	Clock Bn Data into B Register
L	L	X	H or L	X	H			B Register to An (Stored Mode)
L	L	X	\sim	X	H			Clock Bn into B Register and Output to An

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Immaterial
$\mathcal{\sim}=$ LOW-to-HIGH Transition
Note 1: The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled;
i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and \#2 control pins.

FIGURE 1.

FIGURE 3.

FIGURE 2.

FIGURE 4.

Logic Diagram

Absolute Maximum Ratings(Note 2)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 3) Input Current (Note 3)
Voltage Applied to Any Output
in the Disable or
Power-Off State
in the HIGH State
Current Applied to Output
in LOW State (Max)
DC Latchup Source Current
Over Voltage Latchup (I/O)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

-0.5 V to +5.5 V -0.5 V to V_{CC}
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$ $-500 \mathrm{~mA}$ 10 V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	
\quad Data Input	$50 \mathrm{mV} / \mathrm{ns}$
Enable Input	$20 \mathrm{mV} / \mathrm{ns}$
Clock Input	$100 \mathrm{mV} / \mathrm{ns}$

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{CC}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$					$\begin{aligned} & I_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{n}, B_{n}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}, \text { (Non-I/O Pins) }$ All Other Pins Grounded
I_{IH}	Input HIGH Current			1	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Non-I/O Pins) }(\text { Note } 5) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}(\text { Non-I/O Pins }) \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (Non-I/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
I_{LL}	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Non-I/O Pins) }(\text { Note } 5) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}(\text { Non-I/O Pins }) \end{aligned}$
$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0V-5.5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right) ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
$\mathrm{IIL}^{+} \mathrm{I}_{\text {OZL }}$	Output Leakage Current			-10	$\mu \mathrm{A}$	0V-5.5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right) ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
l OS	Output Short-Circuit Current	-100		-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {zz }}$	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right)$ All Others GND
$\mathrm{I}_{\text {CCH }}$	Power Supply Current			1.0	mA	Max	All Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			60	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current			1.0	mA	Max	Outputs 3-STATE; All Others GND
$\mathrm{I}_{\text {CCT }}$	Additional $\mathrm{ICC}^{\text {/Input }}$			2.5	mA	Max	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ All Other Outputs at V_{CC} or GND
$\mathrm{I}_{\text {CCD }}$	Dynamic I_{CC} No Load (Note 5)			0.23	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs OPEN $\overline{O E}$, DIR, and SEL = GND, Non-I/O = GND or V_{CC} (Note 4) One Bit toggling, 50% duty cycle
Note 4: For 8-bit toggling, $\mathrm{I}_{\mathrm{CCD}}<1.4 \mathrm{~mA} / \mathrm{MHz}$. Note 5: Guaranteed but not tested.							

DC Electrical Characteristics

(SSOP Package)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}		0.7	1.2	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-1.4	-1.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ}$ (Note 7)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.2	1.6		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		1.2	0.8	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)

Note 6: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at LOW. Guaranteed, but not tested.
Note 7: Max number of outputs defined as (n . $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested
Note 8: Max number of data inputs (n) switching. $n-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold ($\mathrm{V}_{\text {IHD }}$). Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		200				MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $S B A_{n}$ or $S A B_{n}$ to A_{n} to B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	$\begin{aligned} & \text { Enable Time } \\ & \overline{\mathrm{OE}}_{\mathrm{n}} \text { to } \mathrm{A}_{n} \text { or } \mathrm{B}_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{OE}}_{\mathrm{n}} \text { to } \mathrm{A}_{n} \text { or } \mathrm{B}_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time DIR n to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	$\begin{aligned} & \text { Disable Time } \\ & \text { DIR } R_{n} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	3.8 3.2	6.5 6.5		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW Bus to Clock	2.0		2.0		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW Bus to Clock	1.0		1.0		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH or LOW	3.0		3.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

Φ	0.13 M	A	$\mathrm{B}(\mathrm{S}$	$\mathrm{C}(\mathrm{S}$,

DETAIL A
TYPICAL
MTD56 (REV B)

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

 Package Number MTD56Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
