FAIRCHILD			July 1989 Revised November 1999
SEMICONDUCTロRтM			
74ACQ245 - 74 ACTQ245			
Quiet Series ${ }^{\text {TM }}$ Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs			
General Description Features			
The ACQ/ACTQ245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for busoriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (active-LOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition. The ACQ/ACTQ utilizes Fairchild Quiet Series ${ }^{T M}$ technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series ${ }^{T M}$ features GTO'M output control and undershoot corrector in addition to a split ground bus for superior performance.			- I_{CC} and I_{OZ} reduced by 50% ■ Guaranteed simultaneous switching noise level and dynamic threshold performance ■ Guaranteed pin-to-pin skew AC performance - Improved latch-up immunity ■ 3-STATE outputs drive bus lines or buffer memory address registers ■ Outputs source/sink 24 mA - Faster prop delays than the standard ACT245
Ordering Code:			
Order Number	Package Number		Package Description
74ACQ245SC	M20B	20-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACQ245SJ	M20D	20-Lead Small Outline	Package (SOP) EIAJ TYPE II, 5.3mm Wide
74ACQ245PC	N20A	20-Lead Plastic Dual-	-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACTQ245SC	M20B	20-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACTQ245SJ	M20D	20-Lead Small Outline	Package (SOP) EIAJ TYPE II, 5.3mm Wide
74ACTQ245QSC	MQA20	20-Lead Quarter Size	Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
74ACTQ245MSA	MSA20	20-Lead Shrink Small	Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ245MTC	MTC20	20-Lead Thin Shrink S	mall Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACTQ245PC	N20A	20-Lead Plastic Dual-	-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.			

Absolute Maximum Ratings(Note 1)

Supply Voltage (VCC)
DC Input Diode Current ($l_{1 K}$)

$$
\begin{aligned}
& V_{1}=-0.5 \mathrm{~V} \\
& \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
\end{aligned}
$$

DC Input Voltage (V_{l})
DC Output Diode Current (lok)

$$
\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

DC Output Voltage (V_{O})
DC Output Source
or Sink Current (I_{O})
DC $V_{C C}$ or Ground Current per Output Pin (I_{CC} or $\mathrm{I}_{\mathrm{GND}}$)
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
DC Latch-Up Source or
Sink Current
Junction Temperature (T_{J})
PDIP
-0.5 V to +7.0 V
-20 mA
+20 mA
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\pm 300 \mathrm{~mA}$
$140^{\circ} \mathrm{C}$

Recommended Operating

 ConditionsSupply Voltage (V_{CC})
ACQ
2.0V to 6.0 V ACTQ
Input Voltage (V_{l})
Output Voltage (V_{O})
Operating Temperature (T_{A})
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
ACQ Devices
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC}
V_{CC} @ 3.0V, 4.5V, 5.5V
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$ ACTQ Devices
V_{IN} from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications

DC Electrical Characteristics for ACQ

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.25 \\ & 2.75 \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	v	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OH }}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	v	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{\mathrm{V} \text { OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	v	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \left.\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note } 2\right) \\ & \hline \end{aligned}$
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{N}} \\ \text { (Note 4) } \end{array}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
loLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
ІОНD	Output Current (Note 3)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
${ }_{\mathrm{I} C}$ (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
lozt	Maximum I/O Leakage Current	5.5		± 0.3	± 3.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{LL}}, \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$

Symbol	Parameter	$\begin{aligned} & \hline V_{c c} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Typ	Guaranteed Limits				
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5			v	Figure 1, Figure 2 (Note 5)(Note 6)
$\bar{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.6	-1.2			V	Figure 1, Figure 2 (Note 5)(Note 6)
$\overline{\mathrm{V}} \mathrm{HD}$	Minimum HIGH Level Dynamic Input Voltage	5.0	3.1	3.5			V	(Note 5)(Note 7)
$\overline{\mathrm{V} \text { ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.9	1.5			v	(Note 5)(Note 7)
Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms , one output loaded at a time. Note 4: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$. Note 5: DIP package. Note 6: Max number of outputs defined as (n). Data Inputs are driven 0 V to 5 V ; one output @ GND. Note 7: Max number of Data Inputs (n) switching. ($n-1$) Inputs switching $0 V$ to 5 V (ACQ). Input-under-test switching: 5V to threshold (VILD), $O V$ to threshold $\left(V_{\mathrm{IHD}}\right), f=1 \mathrm{MHz}$. DC Electrical Characteristics for ACTQ								
Symbol	Parameter		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Conditions
				Typ	Guaranteed Limits		Units	
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
			$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IOH}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 8) } \\ & \hline \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	v	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
			$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 8) \end{aligned}$
$\mathrm{I}_{1 /}$	Maximum Input Leakage Current		5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{GND}$
IOZT	Maximum 3-STATE Leakage Current		5.5		± 0.3	± 3.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{v}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
${ }_{\text {ICCT }}$	Maximum ICC/Input		5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
IoLD	$\begin{aligned} & \text { Minimum Dynamic } \\ & \text { Output Current (Note 9) } \end{aligned}$		5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD			5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current		5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}		5.0	1.1	1.5		V	Figure 1, Figure 2 (Note 10)(Note 11)
$\overline{\mathrm{V} \text { OLV }}$	Quiet OutputMinimum Dynamic V_{OL}		5.0	-0.6	-1.2		v	Figure 1, Figure 2 (Note 10)(Note 11)
$\overline{\mathrm{V}_{\text {HD }}}$	Minimum HIGH Level Dynamic Input Voltage Maximum LOW Level Dynamic Input Voltage		5.0	1.9	2.2		v	(Note 10)(Note 12)
$\mathrm{V}_{\text {ILD }}$			5.0	1.2	0.8		V	(Note 10)(Note 12)
Note 8: All outputs loaded; thresholds on input associated with output under test. Note 9: Maximum test duration 2.0 ms , one output loaded at a time. Note 10: DIP package. Note 11: Max number of outputs defined as (n). $\mathrm{n}-1$ Data Inputs are driven 0 V to 3 V ; one output @ GND. Note 12: Max number of Data Inputs (n) switching. ($\mathrm{n}-1$) Inputs switching 0 V to 3 V (ACTQ). Input-under-test switching: 3 V to threshold (VILD), OV to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right) \mathrm{f}=1 \mathrm{MHz}$.								

AC Electrical Characteristics for ACQ

Symbol	Parameter	V_{CC} (V) (Note 13)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PHL}}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosLh	Output to Output Skew (Note 14) Data to Output	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		1.0 0.5	1.5 1.0		$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	ns

Note 13: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

AC Electrical Characteristics for ACTQ

Symbol	Parameter	V_{CC} (V) (Note 15)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay Data to Output	5.0	1.5	5.5	7.0	1.5	7.5	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output Skew (Note 16) Data to Output	5.0		0.5	1.0		1.0	ns

Note 15: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Note 16: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLh). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
$\mathrm{C}_{I / \mathrm{O}}$	Input/Output Capacitance	15	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	80.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.
Equipment:
Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement.
5. Set the HFS generator input levels at 0 V LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

FIGURE 1. Quiet Output Noise Voltage Waveforms
Note 17: $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference.
Note 18: Input pulses have the following characteristics: $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=$ $3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $V_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed $\mathrm{V}_{I H}$ limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

20－Lead Quarter Size Outline Package（QSOP），JEDEC MO－137，0．150＂Wide Package Number MQA20

20－Lead Shrink Small Outline Package（SSOP），EIAJ TYPE II，5．3mm Wide
Package Number MSA20

74ACQ245•74ACTQ245

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC REF NOTE 6, DATE $7 / 93$
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC20RevD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
