FAIRCHILD

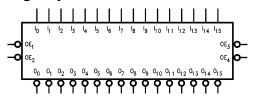
SEMICONDUCTOR

August 1999 Revised October 1999 74ACT16240 16-Bit Inverting Buffer/Line Driver with 3-STATE Outputs

74ACT16240 16-Bit Inverting Buffer/Line Driver with 3-STATE Outputs

General Description

The ACT16240 contains sixteen inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/ receiver. The device is nibble controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.


Features

- Separate control logic for each byte
- 16-bit version of the ACT240
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description				
74ACT16240SSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide				
74ACT16240MTD MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wid						
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.						

Logic Symbol

Pin Descriptions

Pin Names	Description			
0E _n	Output Enable Inputs (Active LOW)			
I ₀ —I ₁₅	Inputs			
$\overline{O}_0 - \overline{O}_{15}$	Outputs			

Connection Diagram				
I I	1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32	$ \begin{array}{c} \overline{OE}_{2} \\ \overline{OE}_{2} \\ \overline{OE}_{3} \\ \overline{OE}_{1} \\ \overline{OE}_{2} \\ \overline{OE}_{1} \\ \overline{OE}_{2} \\ \overline{OE}_{1} \\ \overline{OE}_{2} $	
V _{CC}	18 19 20 21 22 23	31 30 29 28 27 26	V _{CC} 1 ₁₂ 1 ₁₃ GND 1 ₁₄ 1 ₁₅	
OE ₄	24	25	- OE3	

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

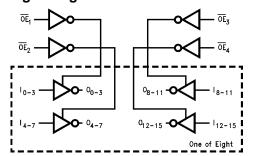
Truth Tables

Inj	Outputs	
OE ₁ I ₀ –I ₃		$\overline{O}_0 - \overline{O}_3$
L	L	н
L	н	L
н	х	Z

In	Outputs		
OE ₂	OE ₂ I ₄ –I ₇		
L	L	Н	
L	н	L	
н	х	Z	

In	Inputs		
OE ₃	I ₈ —I ₁₁	0 ₈ –0 ₁₁	
L	L	Н	
L	н	L	
Н	х	Z	

In	Inputs				
OE ₄	I ₁₂ -I ₁₅	0 ₁₂ -0 ₁₅			
L	L	Н			
L	н	L			
Н	х	Z			


H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial Z = High Impedance

Functional Description

The ACT16240 contains sixteen inverting buffers with 3-STATE standard outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independently of the other. The control pins may be shorted together to obtain full 16-bit operation. The <u>3-</u>STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each nibble. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to $V_{CC}^{} + 0.5V_{}$
DC Output Source/Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
per Output Pin	± 50 mA
Junction Temperature	+140°C
Storage Temperature	-65°C to +150°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

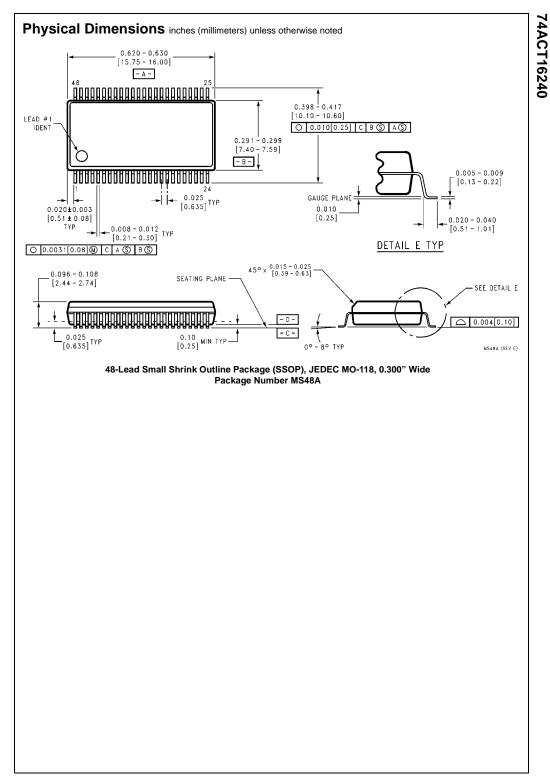
DC Electrical Characteristics

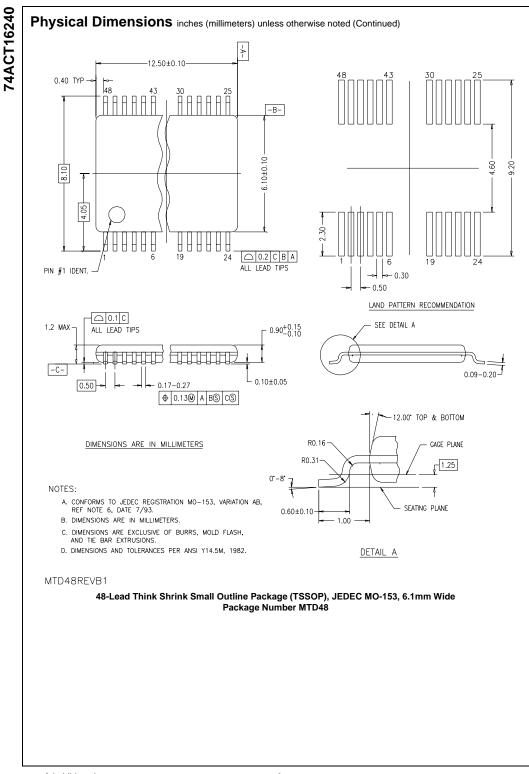
Symbol	Parameter	V _{cc}	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol		(V)	Typ Gua		aranteed Limits	Ulina	Collutions
VIH	Minimum HIGH	4.5	1.5	2.0	2.0	v	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	v	L _ 50 A
	Output Voltage	5.5	5.49	5.4	5.4	v	I _{OUT} = -50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	1	3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5	1	4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	v	l _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	100T = 30 hz
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	1	0.36	0.44	V	I _{OL} = 24 mA
		5.5	1	0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{OZ}	Maximum 3-STATE	5.5	(±0.5	±5.0	μA	$V_I = V_{IL}, V_{IH}$
	Leakage Current	0.0	1	±0.5	.5 ±5.0	μА	$V_0 = V_{CC}, GND$
I _{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μΑ	$V_I = V_{CC}, GND$
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
I _{CC}	Max Quiescent Supply Current	5.5		8.0	80.0	μΑ	$V_{IN} = V_{CC}$ or GND
I _{OLD}	Minimum Dynamic	5.5		1	75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min

Note 2. All outputs loaded, the should associated with output under tes

Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

-
0
4
2
Ö
~
Η.
Ö
7
-
P
~


AC Electrical Characteristics


Symbol	Parameter	V _{CC} (V)	T _A = +25°C C₁ = 50 pF			T _A = -40°C to +85°C C ₁ = 50 pF		Units
0,		(Note 4)	Min	Тур	Max	Min	Max	•
t _{PLH}	Propagation Delay	5.0	2.7	4.8	7.3	2.7	7.8	
t _{PHL}	Data to Output	5.0	3.0	5.1	7.3	3.0	7.8	ns
t _{PZH}	Output Enable Time	5.0	2.5	4.5	7.4	2.5	7.9	
t _{PZL}		5.0	2.7	4.7	7.5	2.7	8.0	ns
t _{PHZ}	Output Disable Time	5.0	2.3	5.0	7.9	2.3	8.2	
t _{PLZ}		5.0	2.0	4.6	7.4	2.0	7.9	ns

Note 4: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Pin Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	30	pF	$V_{CC} = 5.0V$

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com