

Connection Diagram

Pin Assignment for SSOP and TSSOP

Functional Description

The ACTQ16543 contains sixteen non-inverting transceiv ers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins may be shorted together to obtain full 16 -bit operation. The following description applies to each byte. For data flow from A to B , for example, the A-to-B Enable ($\overline{C E A B}_{n}$) input must be LOW in order to enter data from $\mathrm{A}_{0}-\mathrm{A}_{15}$ or take data from $\mathrm{B}_{0}-\mathrm{B}_{15}$ as indicated in the Data I/O Control Table. With $\overline{C E A B}_{n}$ LOW, a LOW signal on the A-to-B Latch Enable ($\left.\overline{L E A B}_{n}\right)$ input makes the A -to- B latches transparent; a subsequent LOW-to-HIGH transition of the $\overline{\mathrm{LEAB}}_{\mathrm{n}}$ signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{\mathrm{CEAB}}_{\mathrm{n}}$ and $\mathrm{OEAB}_{\mathrm{n}}$ both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}_{n}$, $\overline{\mathrm{LEBA}}_{\mathrm{n}}$ and $\overline{\mathrm{OEBA}}_{\mathrm{n}}$ inputs.

Data I/O Control Table

Inputs			Latch Status (Byte n)	Output Buffers (Byte n)
$\overline{C E A B}_{n}$	$\overline{\text { LEAB }}_{\mathrm{n}}$	$\overline{O E A B}_{n}$		
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
A-to-B data flow shown; B-to-A flow control
is the same, except using $\overline{\mathrm{CEBA}}_{n}, \overline{\mathrm{LEBA}}_{n}$ and $\overline{\mathrm{OEBA}}_{n}$

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (VCC)
DC Input Diode Current ($I_{\mathbb{K}}$)

$$
V_{1}=-0.5 \mathrm{~V}
$$

$V_{1}=V_{C C}+0.5 \mathrm{~V}$
DC Output Diode Current (IOK

$$
\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

DC Output Voltage (V_{O})
DC Output Source/Sink Current (IO)
DC V_{CC} or Ground Current
per Output Pin
Storage Temperature
-0.5 V to +7.0 V
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage (V_{CC})
4.5 V to 5.5 V

Input Voltage (V_{1})
Output Voltage (V_{O})
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$
0 V to V_{CC}
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$125 \mathrm{mV} / \mathrm{ns}$

$$
\mathrm{V}_{\mathrm{IN}} \text { from } 0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}
$$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with out exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not ecommend operation of FACT ${ }^{\mathrm{M}}$ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
V_{OL}	Maximum LOW Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
${ }_{\text {IOZT }}$	Maximum I/O Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\overline{I_{\mathrm{IN}}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}},$ GND
$\mathrm{I}_{\text {CCT }}$	Maximum I $\mathrm{CC} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
I_{CC}	Max Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
IoLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current (Note 3)				-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.5	0.8		V	Figure 1, Figure 2 (Note 5)(Note 6)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.5	-0.8		V	Figure 1, Figure 2 (Note 5)(Note 6)
$\overline{\mathrm{V}_{\text {OHP }}}$	Maximum Overshoot	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V	Figure 1, Figure 2 (Note 4)(Note 6)
$\overline{\mathrm{V}_{\mathrm{OHV}}}$	Minimum $V_{C C}$ Droop	5.0	$\mathrm{V}_{\mathrm{OH}}-1.0$	$\mathrm{V}_{\mathrm{OH}}-1.8$		V	Figure 1, Figure 2 (Note 4)(Note 6)
$\overline{\mathrm{V}_{\mathrm{IHD}}}$	Minimum HIGH Dynamic Input Voltage Level	5.0	1.7	2.0		V	(Note 4)(Note 7)
$\overline{\mathrm{V} \text { ILD }}$	Maximum LOW Dynamic Input Voltage Level	5.0	1.2	0.8		V	(Note 4)(Note 7)
Note 2: All outputs loaded; thresholds associated with output under test. Note 3: Maximum test duration 2.0 ms ; one output loaded at a time. Note 4: Worst case package.							

DC Electrical Characteristics (Continued)

Note 5: Maximum number of outputs that can switch simultaneously is n. $(n-1)$ outputs are switched LOW and one output held LOW. Note 6: Maximum number of outputs that can switch simultaneously is n. $(n-1)$ outputs are switched HIGH and one output held HIGH. Note 7: Maximum number of data inputs (n) switching. ($n-1$) inputs switching 0 V to 3 V Input under test switching 3 V to threshold (VILD).

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \\ \text { (Note 8) } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		3.8	5.9	8.3	3.0	9.0	
$\mathrm{t}_{\text {PHL }}$	Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}	5.0	3.5	5.5	7.9	2.6	8.5	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		4.7	6.9	9.8	3.4	10.8	
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \overline{\mathrm{LEBA}}_{\mathrm{n}}, \overline{\mathrm{LEAB}}_{\mathrm{n}} \\ & \text { to } \mathrm{A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}} \end{aligned}$	5.0	3.9	6.3	9.0	3.1	9.8	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time		4.2	6.3	9.2	3.0	9.9	
$t_{\text {PZL }}$	$\overline{\mathrm{OEBA}}_{n}$ or $\overline{\mathrm{OEAB}}_{n}$ to A_{n} or B_{n} $\overline{\mathrm{CEBA}}_{n}$ or $\overline{\mathrm{CEAB}}_{n}$ to A_{n} or B_{n}	5.0	4.9	7.3	10.3	3.6	10.3	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time		2.8	5.2	8.0	2.1	8.3	
tpLZ	$\overline{\mathrm{OEBA}}_{n}$ or $\overline{\mathrm{OEAB}}_{n}$ to A_{n} or B_{n} $\overline{\mathrm{CEBA}}_{n}$ or $\overline{\mathrm{CEAB}}_{\mathrm{n}}$ to A_{n} or B_{n}	5.0	2.6	5.0	7.6	2.0	8.1	ns

Note 8: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
AC Operating Requirements

Symbol	Parameter	V_{cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		$\begin{gathered} (\mathrm{V}) \\ (\text { Note } 9) \end{gathered}$	Typ	Guaranteed Minimum		
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW A_{n} or B_{n} to $\overline{L E B A}_{n}$ or $\overline{L E A B}_{n}$	5.0		3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW A_{n} or B_{n} to $\overline{L E B A}_{n}$ or $\overline{\operatorname{LEAB}}_{n}$	5.0		1.5	1.5	ns
${ }^{\text {w }}$ w	Latch Enable, B to A Pulse Width, LOW	5.0		4.0	4.0	ns

[^0]| Symbol | Parameter | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$
 16 Outputs Switching (Note 10) | | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 11) } \end{gathered}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | Typ Max | Min Max | |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay
 Transparent Mode
 A_{n} to B_{n} or B_{n} to A_{n} | $\begin{aligned} & 4.5 \\ & 3.7 \end{aligned}$ | 11.1 9.6 | 5.8 14.3
 5.1 13.4 | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{LEBA}}_{n}, \overline{\mathrm{LEAB}}_{\mathrm{n}} \text { to } A_{n}, \mathrm{~B}_{n} \end{aligned}$ | $\begin{aligned} & \hline 4.3 \\ & 3.7 \end{aligned}$ | 11.3 9.7 | 6.2 16.3
 5.8 14.9 | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$ | $\begin{aligned} & \text { Output Enable Time } \\ & \overline{\mathrm{OEBA}}_{n} \text { or } \overline{\mathrm{OEAB}}_{n} \text { to } A_{n} \text { or } B_{n} \\ & \overline{\mathrm{CEBA}}_{n} \text { or } \overline{\mathrm{CEAB}}_{n} \text { to } A_{n} \text { or } B_{n} \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$ | 10.7 11.3 | (Note 12) | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$ | $\begin{aligned} & \text { Output Disable Time } \\ & \overline{\mathrm{OEBA}}_{n} \text { or } \overline{\mathrm{OEAB}}_{n} \text { to } A_{n} \text { or } B_{n} \\ & \overline{\mathrm{CEBA}}_{n} \text { or } \overline{\mathrm{CEAB}}_{n} \text { to } A_{n} \text { or } B_{n} \end{aligned}$ | $\begin{aligned} & \hline 3.0 \\ & 2.8 \end{aligned}$ | 8.0 7.6 | (Note 13) | ns |
| toshL
 (Note 14) | Pin to Pin Skew HL Data to Output | | 1.1 | | ns |
| tosLh
 (Note 14) | Pin to Pin Skew LH Data to Output | | 1.4 | | ns |
| $\mathrm{t}_{\mathrm{OSHL}}$
 (Note 14) | Pin to Pin Skew Latch to Output | | 2.6 | | ns |
| tosLh
 (Note 14) | Pin to Pin Skew Latch to Output | | 1.0 | | ns |
| tost
 (Note 14) | Pin to Pin Skew Data to Output | | 1.0 | | ns |
| tost (Note 14) | Pin to Pin Skew Latch to Output | | 2.2 | | ns |
| Note 12: 3-STATE delays are load dominated and have been excluded from the datasheet.
 Note 13: The Output Disable Time is dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet.
 Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW to HIGH and/or HIGH to LOW ($\mathrm{t}_{\mathrm{OST}}$).
 Capacitance | | | | | |
| Symbo | Parameter | Typ | Units | Conditions | |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | |
| CPD | Power Dissipation.Capacitance | 95.0 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | |
| | | | | | |

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.
Equipment:
Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.

$\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference.
Input pulses have the following characteristics: $\mathrm{f}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}$
$=3 \mathrm{~ns}$, skew < 150 ps.
FIGURE 1. Quiet Output Noise Voltage Waveforms
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement.
5. Set the HFS generator input levels at $O V$ LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.
$\mathrm{V}_{\text {OLP }} / \mathrm{V}_{\text {OLV }}$ and $\mathrm{V}_{\text {OHP }} / \mathrm{V}_{\text {OHV }}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case for active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $V_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability on the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Package Number MTD56

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
[^1]
[^0]: Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

[^1]: Fairchild does not assume any responsibility for use of ary circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

