FAIRCHILD	March 1993 Revised November 1999
SEMICONDUCTORTM	
74ACTQ74	
Quiet Series Dual D-Type	
Positive Edge-Triggered Flip-Flop	
General Description	Asynchronous Inputs:
The 74ACTQ74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary ($\mathrm{Q}, \overline{\mathrm{Q}}$) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.	LOW input to \bar{S}_{D} (Set) sets Q to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and \bar{Q} HIGH Features - ICC reduced by 50%
The ACTQ74 utilizes Fairchild Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series ${ }^{\text {TM }}$ features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.	Guaranteed simultaneous switching noise level and dynamic threshold performance - Guaranteed pin-to-pin skew AC performance - Improved latch-up immunity ■ 4 kV minimum ESD immunity ■ TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74ACTQ74SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74ACTQ74SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ74PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering form.

Connection Diagram

Pin Descriptions

Pin Names	Description
D_{1}, D_{2}	Data Inputs
$C P_{1}, C P_{2}$	Clock Pulse Inputs
$\bar{C}_{D 1}, \bar{C}_{D 2}$	Direct Clear Inputs
$\bar{S}_{D 1}, \bar{S}_{D 2}$	Direct Set Inputs
$Q_{1}, \bar{Q}_{1}, Q_{2}, \bar{Q}_{2}$	Outputs

[^0]

Absolute Maximum Ratings（Note 1）

Supply Voltage（ V_{CC} ）
DC Input Diode Current（ I_{K} ）

$$
\begin{aligned}
& V_{1}=-0.5 \mathrm{~V} \\
& V_{1}=V_{C C}+0.5 \mathrm{~V}
\end{aligned}
$$

DC Input Voltage（ V_{I} ）
DC Output Diode Current（IOK）

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
\end{aligned}
$$

DC Output Voltage（ V_{O} ）
DC Output Source
or Sink Current（I）
DC V_{CC} or Ground Current per Output Pin（ I_{CC} or $\mathrm{I}_{\mathrm{GND}}$ ）
Storage Temperature（ $\mathrm{T}_{\mathrm{STG}}$ ）
DC Latch－Up Source or Sink Current
Junction Temperature（ T_{J} ）PDIP
-0.5 V to +7.0 V
$-20 \mathrm{~mA}$ $+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\pm 300 \mathrm{~mA}$ $140^{\circ} \mathrm{C}$

Recommended Operating

 ConditionsSupply Voltage（ V_{CC} ）
Input Voltage（ V_{I} ）
Output Voltage（ V_{O} ）
Operating Temperature $\left(T_{A}\right)$
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
V_{IN} from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{IOH}^{\mathrm{OH}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	v	$\mathrm{I}_{\text {OUt }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{II}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
IN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
loz	Maximum 3－STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$I_{\text {CCT }}$	Maximum ICC／Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
IoLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD	Output Current（Note 2）	5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{I}_{\text {c }}$	Maximum Quiescent Supply Current	5.5		2.0	20.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figure 1，Figure 2 （Note 4）（Note 5）
VoLV	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	Figure 1，Figure 2 （Note 4）（Note 5）
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	1.9	2.2		V	（Note 4）（Note 6）
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	（Note 4）（Note 6）
Note 2：All outputs loaded；thresholds on input associated with output under test． Note 3：Maximum test duration 2.0 ms ，one output loaded at a time． Note 4：PDIP package． Note 5：Max number of outputs defined as（n）．Data inputs are driven OV to 3 V ．One output＠GND． Note 6：Max number of data inputs（ n ）switching．（ $n-1$ ）inputs switching $0 V$ to $3 V$ ．Input－under－test switching： 3 V to threshold（ $\mathrm{V}_{\text {ILD }}$ ）， OV to threshold $\left(\mathrm{V}_{\text {IHD }}\right), \mathrm{f}=1 \mathrm{MHz}$ ．							

Symbol	Parameter		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
${ }_{\mathrm{f}_{\text {max }}}$	Maximum Clock Frequency	5.0	145	200		125		MHz
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{C}}_{\text {Dn }} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}} \text { to } \mathrm{Q}_{n} \text { or } \overline{\mathrm{Q}}_{n} \end{aligned}$	5.0	3.0	7.0	8.5	3.0	9.0	ns
$\begin{array}{\|l} \hline \begin{array}{l} \text { PLL } \\ t_{\text {PHL }} \end{array} \\ \hline \end{array}$	Propagation Delay $C P_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	5.0	3.0	6.5	8.0	3.0	8.6	ns
${ }^{\text {t }}$ OSLH toshl	Output to Output Skew (Note 8)	5.0		0.5	1.0		1.0	ns

Note 7: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

AC Operating Requirements

Symbol	Parameter	$V_{c c}$ (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 9)	Typ		teed Minimum	
t_{s}	Setup Time, HIGH or LOW D_{n} to CP_{n}	5.0	1.0	3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW D_{n} to CP_{n}	5.0	-0.5	1.5	1.5	ns
t_{W}	$C P_{n} \text { or } \overline{\mathrm{C}}_{\mathrm{Dn}} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}}$ Pulse Width	5.0	3.0	4.0	4.0	ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to CP	5.0	-2.5	1.5	1.5	ns

Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ OPEN
C_{PD}	Power Dissipation Capacitance	60.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.
Equipment:
Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement

$\mathrm{V}_{\text {OHV }}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference.
Input pulses have the following characteristics: $f=1 \mathrm{MHz}, t_{r}=3 \mathrm{~ns}$, $t_{f}=3 \mathrm{~ns}$, skew <150 ps
FIGURE 1. Quiet Output Noise Voltage Waveforms
5. Set the HFS generator input levels at OV LOW and 3V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case transition for active and enable.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $V_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $V_{\text {IHD }}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

74ACTQ74 Quiet Series Dual D-Type

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be rea sonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: FACT $^{T M}$, FACT Quiet Series ${ }^{T M}$ and GTOTM are trademarks of Fairchild Semiconductor Corporation

